
Acta Cryst. (2009). A65, 81–108 doi:10.1107/S0108767308040592 81

lead articles

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 29 July 2008

Accepted 2 December 2008

# 2009 International Union of Crystallography

Printed in Singapore – all rights reserved

Three-dimensional Euclidean nets from two-
dimensional hyperbolic tilings: kaleidoscopic
examples

S. J. Ramsden, V. Robins and S. T. Hyde*

Department of Applied Mathematics, Research School of Physics and Engineering, Australian

National University, Canberra, ACT 0200, Australia. Correspondence e-mail:

stephen.hyde@anu.edu.au

We present a method for geometric construction of periodic three-dimensional

Euclidean nets by projecting two-dimensional hyperbolic tilings onto a family of

triply periodic minimal surfaces (TPMSs). Our techniques extend the

combinatorial tiling theory of Dress, Huson & Delgado-Friedrichs to enumerate

simple reticulations of these TPMSs. We include a taxonomy of all networks

arising from kaleidoscopic hyperbolic tilings with up to two distinct tile types

(and their duals, with two distinct vertices), mapped to three related TPMSs,

namely Schwarz’s primitive (P) and diamond (D) surfaces, and Schoen’s gyroid

(G).

1. Introduction

The science of networks has grown beyond the inherent

mathematical interest of graph theory, thanks to the intimate

connection between complex systems and networks. Those

connections are now a prime focus of statistical physics, where

the study of random networks has been catalysed by inter-

esting results concerning ‘small-world’ and ‘scale-free’ systems

(Watts, 2003; Barabasi, 2002). Complementary to these

endeavours is the study of ‘crystal nets’: triply periodic

embeddings of graphs in three-dimensional Euclidean space.

Interest in crystal nets stems from their fundamental relevance

to condensed materials (Hyde et al., 2008) from atomic crystals

(Wells, 1977; O’Keeffe & Hyde, 1996; Klee, 2004) to novel

framework materials (Ockwig et al., 2005; Öhrström &

Larsson, 2005), including carbon polymorphs (Strong et al.,

2004), zeolites (Treacy et al., 1997; International Zeolite

Association, 2008), related oxide (Zou et al., 2008) and

alumino-phosphate (AlPO) materials (Li et al., 2008), imida-

zolate (ZIF) frameworks (Banerjee et al., 2008) and metal-

coordination polymeric materials (Blatov et al., 2004; Batten,

2001). The microdomains of some liquid-crystalline phases of

soft materials, including amphiphile and copolymer assemblies

and derivative mesoporous solids, are also characterized by

crystal nets (Hyde & Schroeder, 2003).

This paper is concerned with the enumeration of crystal nets

(or just ‘nets’), a topic that has gained momentum in recent

years, helped by advances in tiling theory that we also exploit

here. The technique we use is complementary to a more

conventional approach that employs three-dimensional tiling

theory (Delgado-Friedrichs et al., 1999; Blatov et al., 2007), in

that we build the nets largely within non-Euclidean

(hyperbolic) two-dimensional space, then project to three-

dimensional (Euclidean) space. Any systematic enumeration

of crystal nets is constrained by the issue of combinatorial

explosion; distinct approaches therefore explore different

regions of the universe of crystal nets. Indeed, our results are

largely unduplicated by three-dimensional techniques (Hyde

et al., 2006).

The underlying methodology of our approach is to decorate

a surface with all allowed symmetric tilings of a given

complexity, then use the topology of the tile boundaries and

their embedding in the surface to define a net. To guide the

reader through these various stages of net building, we adopt

the convention that all tilings, composed of vertices, edges and

faces, are denoted by upper-case names, while nets, composed

of vertices and edges only, have lower-case names.

Our enumeration is constrained by considering a particular

class of surfaces to reticulate. For various reasons that will be

described in the paper, we choose triply periodic minimal

surfaces (TPMSs), which give a natural bridge between two-

dimensional hyperbolic tilings and three-dimensional Eucli-

dean nets. A particular choice of TPMSs provides a filter with

which to control the enumeration both in two-dimensional

hyperbolic and three-dimensional Euclidean space. Here we

use the simplest (cubic genus-3) TPMS, namely Schwarz’s

primitive (P) and diamond (D) surfaces, and Schoen’s gyroid

(G).

Tilings of the TPMSs, called E-tilings, may be lifted to their

universal covering space, the two-dimensional hyperbolic

plane H2. Tilings there, that we call U-tilings, give rise to two-

dimensional hyperbolic nets that we call h-nets. Alternatively

we can form a compact quotient space of the TPMS, where

primitive lattice translations are made equivalent to the

identity operation, and the resulting surface is the closed

genus-3 tritorus. Tilings on this finite surface define O-tilings;



subsequent embedding of the tritorus in three-dimensional

space leads to a specific threading of edges, forming the o-net.

Finally, the tilings of a TPMS can give rise to at least two

different net types, depending on how much embedding

information is used. A net embedded in the TPMS (following

the edges of the E-tiling) will share its three-dimensional

symmetry, and we label these surface reticulations e-nets.

Ignoring the surface, and looking only at network topology, we

can relax the net in three-dimensional space (E3) to give

canonical, maximally symmetric forms called s-nets.

Here we explain in detail the process of generating the

various tilings and nets. For ease of reference, we summarize

these in Table 1 and display key steps of the enumeration

in the flowchart of Fig. 1. A specific example is illustrated in

Fig. 2.

In order to illustrate hyperbolic tilings, we require a model

of the hyperbolic plane, that – like the surface of a sphere –

cannot be readily imaged on the page without distortions. The

hyperbolic plane is illustrated in this paper using the Poincaré

disc model (Stillwell, 1989). The vast area of hyperbolic space

is compressed into a unit disc at the expense of significant

foreshortening of distances, that are shrunk more and more

towards the perimeter of the disc. This model is attractive in

that it is conformal, with no distortion of angles induced by the

map from hyperbolic space to the disc; however, hyperbolic

lines are imaged as circular arcs that intersect the disc

boundary at 90�. The remainder of this introductory section

provides an outline of the paper.

The observation that underlies our enumeration scheme is

that the intrinsic geometry and symmetry of TPMSs are

related to discrete groups of two-dimensional hyperbolic

isometries. It is therefore possible to wrap the hyperbolic

plane onto a TPMS in almost the same way as the Euclidean

plane wraps onto a cylinder. This wrapping is formally defined

by a covering map, described in detail for the primitive (P),

diamond (D) and gyroid (G) surfaces in x2. The determination

of suitable covering maps is an essential component of the

enumeration process. Further, among the infinite variety of

two-dimensional hyperbolic tilings, we choose those examples

whose symmetries inH2 are commensurate with both the local

and translational symmetries of the TPMS. Those allowed

symmetries were presented in an earlier paper (Robins et al.,

2004a). In the current paper we focus on a subset of these: the

kaleidoscopic groups which are generated by reflections only.

The enumeration of suitable hyperbolic tilings involves a

straightforward application of combinatorial tiling theory as

developed by Dress, Huson & Delgado-Friedrichs (Dress,

1987; Dress & Huson, 1987; Delgado-Friedrichs, 1994). We

give an overview of their techniques in x3; technical definitions

are summarized in Appendix B.

In x4 we describe how to embed and unfold these hyper-

bolic tilings in H2 so they are compatible with the symmetries

of the covering maps. This process involves a number of steps

that extend Delaney–Dress theory to account for equivalent

tilings on topologically complex TPMSs. This is the technical

core of the current paper and involves both combinatorial and

group-theoretic algorithms. We then discuss, in x5.1, how these

hyperbolic tilings project onto a TPMS, and present the space-

group symmetries of the resulting surface reticulations.

In x6 we discard the tiling information and examine the

topological structure of the nets defined by edges and vertices.
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Table 1
Definitions of the classes of tilings and nets considered here.

Abbreviation Term
Embedding
space Definition

U-tiling Universal cover tiling H
2 Two-dimensional hyperbolic tilings within specific surface-compatible symmetry subgroups

and translational unit cell. These tilings are represented by unfolded D symbols augmented
with ‘cuts’.

h-net Hyperbolic net H
2 Two-dimensional hyperbolic nets, distinguished by topology only, represented by the unique

maximal-symmetry D symbol with that topology.
O-tiling Tritorus surface reticulation Tritorus Tiling obtained by projecting a U-tiling onto the tritorus.
o-net Finite net E

3 Net formed by the edges of an O-tiling embedded in three-dimensional space. Such nets are
finite ‘molecular’ nets and equivalent up to ambient isotopy class.

E-tiling TPMS surface reticulation TPMS Tiling obtained by projecting a U-tiling onto a periodic minimal surface. Such tilings are
identified by pairing a U-tiling with a covering map.

e-net ‘Epinet’ E
3 Net formed by vertices and edges of the E-tiling, equivalent up to ambient isotopy class.

s-net ‘Systre net’ E
3 Three-dimensional periodic net, defined by topology only, represented by the systre key.

Figure 1
A flowchart depicting the enumeration process and the relationships
between different classes of tilings and nets considered here. 1: Unfold
the D symbol within a specific subgroup chart (many-to-many) (x4). 2:
Find the minimal-image (maximal-symmetry) D symbols (many-to-one)
(x6.1). 3: Map the hyperbolic tiling onto a tritorus (one-to-one) (x5.3). 4:
Embed the tritorus, remove faces, leaving edges in three-dimensional
space (x6.4). 5: Map the hyperbolic tiling onto a triply periodic minimal
surface (one-to-one) (x5.1). 6: Remove faces, leaving embedded edges
and vertices (many-to-one) (x6.2). 7: Find the canonical, maximally
symmetric form for the e-net topology (many-to-one) (x6.3).



To further clarify our techniques, we illustrate the proce-

dure from start to finish by a fully worked example in x7.

The output of the enumeration process for kaleidoscopic

tilings is summarized in xx6 and 9, with emphasis on the variety

of e- and s-nets that result. These results are far too extensive

to capture in any detail in a publication. Accordingly, we have

built the online Epinet database (Ramsden et al., 2005), which

has detailed searchable catalogues of data and images linking

tilings and nets.

In the future, this project will grow to explore non-

kaleidoscopic tilings, in directions outlined in x8. Accordingly,

we have written this paper to provide a detailed foundation on

which an evolving suite of network

data will be built. Although foun-

dations invariably make dull

reading, they are needed to expli-

cate a richer and more interesting

superstructure. The reader is

therefore urged to read this paper

in conjunction with the Epinet

database, accessible at http://

epinet.anu.edu.au.

2. Hyperbolic symmetries and
the covering maps

Note. Throughout this paper we

refer to two-dimensional symmetry

groups by their orbifold symbol, a

notation introduced by Conway

(1992) and described in Appendix

A.

The P, D and G surfaces (illu-

strated in Figs. 3 and 4) each have

intrinsic surface symmetry related

to the ?246 group of hyperbolic

reflections. This group is generated

by three reflections, R1, R2 and R3,

whose mirror lines bound a triangle

in H2 with corner angles of �/4, �/6

and �/2. This geometry induces a

set of relations for the group,

ðR1R2Þ
2
¼ ðR2R3Þ

4
¼ ðR1R3Þ

6
¼ I;

and because the operations are

reflections we also have

R2
1 ¼ R2

2 ¼ R2
3 ¼ I (the identity).

Sadoc & Charvolin (1989) identi-

fied translational unit cells of the

oriented P, D and G surfaces that

pull back to the same dodecagon in

the hyperbolic plane. These primi-

tive rhombohedral unit cells and

the corresponding H
2 dodecagon

are shown in Figs. 3 and 5. Eucli-

dean translation vectors for each

surface pull back to the hyperbolic

group generated by the six trans-

lations that pair opposite edges of

the dodecagon. These translations

were originally given in Sadoc &

Charvolin (1989) and are rewritten
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Figure 2
This table of images presents the various stages in our map from the hyperbolic plane (top) to Euclidean
space (bottom). (a) Delaney–Dress symbol enumeration with ?2223 symmetry gives a subgroup tiling,
QC164, containing five distinct flags. ?2223 domains are bounded by orange edges; a single domain is
shaded. (b) The h-net, hqc167, is a maximally symmetric version of the net defined by the edges and
vertices of the tiling QC164. (c) We geometrize the subgroup tiling to form a U-tiling, UQC183, that
respects the local and translational symmetries of the TPMS (in this paper the P, D and G surfaces). The
single ?2223 (shaded) domain from (a) adopts the geometry of a pair of ?246 triangles. (d) The U-tiling is
projected onto a genus-3 torus (tritorus), giving an O-tiling. (e) The edges of the embedded surface
reticulation define an o-net. (f) A hyperbolic translational cell built from the ?2223 domains of (c) is
highlighted by the orange polygon. (g) This polygon projects onto the D surface to give an E-tiling,
EDC183, whose rhombohedral unit cell is shown. (h) The projected tile boundaries on the D surface form
the triply periodic e-net, edc183, with space group P4232. A single unit cell is shown, with quadrilateral
cycles highlighted in purple for clarity. (i) The s-net, sqc7388, is the highest-symmetry embedding of the
e-net topology, with space group Pm3n.



here in terms of the ?246 reflections:

t1 ¼ ðR3R1R3R1R3R2Þ
2;

t2 ¼ R1R3R2ðR3R1R3R1R3R2ÞR3R1R3;

t3 ¼ R3R2ðR3R1R3R1R3R2ÞR3R1R3R1;

�1 ¼ ðR3R1R2R3R1R2R3R1Þ
2;

�2 ¼ R1R3R1ðR3R1R2R3R1R2R3R1ÞR3R1R2R3R2;

�3 ¼ R1R2R3R1R2R3R1ðR3R1R2R3R1R2R3R1ÞR3:

They satisfy the following identity:

�1t2�
�1
3 t�1

1 �2t3�
�1
1 t�1

2 �3t1�
�1
2 t�1

3 ¼ I: ð1Þ

The subgroup T generated by the ti and �i translations is

isomorphic to the fundamental group of a genus-3 torus and

therefore has orbifold symbol ���.

A covering map, �, from H
2 onto a surface in E3, is a

continuous function such that any small disc on the surface

pulls back to a countably infinite number of isomorphic copies

that form a periodic pattern in the hyperbolic plane. The

covering maps we construct have the additional properties of

being conformal and compatible with the symmetries of the

surface. This means that given a Euclidean symmetry of the

surface S : E3
! E

3, there is a corresponding symmetry of the

hyperbolic plane, s : H2
! H

2, such that � � s ¼ S ��. Thus,

the covering map defines a rela-

tionship (a group homomorphism)

between the hyperbolic symmetry

group ?246 and the Euclidean

space group of the surface.

In the case of the P surface, the

hyperbolic reflections R1 and R2

map to Euclidean reflections in

(110) and (100) mirror planes,

respectively, whilst R3 maps to a

twofold axis of rotation in the [110]

directions, lying in the surface (and

therefore swaps the sides of the

surface). In the D surface R1 and R2

map to twofold rotation axes in the

[110] and [100] directions, in the

surface, and R3 maps to a reflection

in the (110) plane. The Euclidean

symmetries of the G surface are

related to the rotational subgroup

246 of ?246. While the hyperbolic

reflections are intrinsic local

symmetries of the G surface, they

do not correspond to Euclidean

isometries of the entire surface.

Instead, the rotation R1R2 maps to

a twofold axis in the [110] direction,

perpendicular to the G surface,

R1R3 maps to a 3 inversion centre

at Wyckoff sites 16a of the space

group Ia3d in the [111] direction,

and R2R3 maps to a 4 inversion at

Wyckoff sites 24d in the [001]

direction. These symmetries are

indicated in the surfaces in Fig. 4.

Further details can be found else-

where (Robins et al., 2005; Molnar,

2002).

The H2 translation subgroup T,

introduced above, maps onto the

Euclidean translation lattice of

each oriented surface space group.

We can summarize the action of a

covering map by describing how

the six generators of T map to three
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Figure 3
Translational unit cells for the P, D and G minimal surfaces. In the left column we show primitive
rhombohedral unit cells that are the image of the hyperbolic dodecagon built from 96 triangles (shown in
Fig. 5). These primitive unit cells are for the space groups of the oriented surface in each case, i.e., the
surface normal direction (and the colouring of both sides) is preserved by the space-group symmetries. In
the right column we show 2� 2� 2 conventional cubic unit cells for each surface, with the rhombohedral
cell inset. The conventional cubic unit cells are those of the space groups of the non-oriented unit cells,
which include symmetries that swap sides of the surface.



independent Euclidean translations a, b, c. For the P, D and G

surfaces we choose the mappings given in Table 2 (other

choices are possible and give identical results).

A tiling of the hyperbolic plane will map to a discrete

reticulation on a surface only when the symmetries of the

tiling are commensurate with the chosen covering map. This

means that the tiling should have at least the symmetry of the

fundamental group of the surface [i.e., the first-order homo-

topy group �1ðSÞ]. Since the P, D and G surfaces have

unbounded genus, their fundamental groups have infinitely

many generators. These groups are isomorphic, via the

covering maps, to distinct subgroups of T. A tiling with only

the symmetry of �1ðPÞ, say, will map to an aperiodic decora-

tion of the P surface, and will be incompatible with the D and

G surfaces. In this paper we study hyperbolic tilings with the

full T symmetry, because these tilings are compatible with all

three surfaces, and generate triply periodic patterns in E3. In

principle, we can use the T subgroup as the starting point for

tiling enumeration, but for convenience we enumerate tilings

within symmetry groups that lie between ?246 and T; we

established earlier that 131 distinct subgroups are suitable

(including ?246 and T) (Robins et al., 2004a).

Among the 131 subgroups of ?246, we have enumerated so

far those tilings whose symmetries are generated by reflections

only, namely the kaleidoscopic subgroups. There are 14 such

subgroups, specified by the generators given in Table 3. The

subgroup relationships are represented in Fig. 6. The kalei-

doscopic subgroups are examples of a much broader class of

groups known to mathematicians as Coxeter groups. To

conform with a forthcoming classification scheme for families

of two-dimensional orbifolds, we refer to the orbifolds of

kaleidoscopic groups as Coxeter orbifolds. Among the 14

kaleidoscopic subgroups there are only 11 different Coxeter

orbifolds. The results presented in this paper are derived from

these kaleidoscopic subgroups, but the concepts and techni-

ques apply (with a little modification) to subgroups with other

types of symmetry.

In the following x3 we give an overview of the relevant

algorithms from combinatorial tiling theory. We then discuss

in x4 how to take these abstract representations and generate

tilings of H2 that are compatible with the surface-covering

maps.

3. Enumerating Delaney–Dress symbols of hyperbolic
tilings

The study of tilings has a long history (Grünbaum & Shep-

hard, 1987), but it was only in the 1980s that a finite symbol

was found to uniquely encode both the topology and

symmetry of an infinite periodic tiling. This result is due to

Andreas Dress (Dress, 1987) using earlier work of Matthew

Delaney, so we refer to this description of a tiling as a

Delaney–Dress symbol. Two students of Dress, Daniel Huson

and Olaf Delgado-Friedrichs, have extended his mathematical

formalism and developed efficient algorithms for enumerating

tilings of the sphere, Euclidean and hyperbolic planes, and

three-dimensional Euclidean space (Huson, 1993; Delgado-

Friedrichs, 2003; Delgado-Friedrichs & Huson, 1999). This

body of work is usually referred to as combinatorial tiling

theory.

Both the symmetry and topology of a two-dimensional tiling

are efficiently encoded by a two-dimensional Delaney–Dress

symbol, described in detail in Appendix B. In effect, these

symbols represent a triangulation of an orbifold. Thus, the

enumeration of two-dimensional tilings amounts to the

systematic enumeration of all possible triangulations (with

certain properties) of a given orbifold.

Delaney–Dress (D) symbols allow exhaustive enumeration

of tilings within a symmetry group up to a desired level of
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Figure 5
The dodecagonal region of the hyperbolic plane that forms the common
preimage for the primitive rhombohedral unit cells of the P, D and G
surfaces. The dark and light triangles are ?246 domains – there are 96
such triangles in the dodecagonal translation unit. The translations that
pair opposite sides of the dodecagon generate an irregular (12, 12) tiling
of the hyperbolic plane, illustrated to the right. Eleven additional
dodecagons (alternating pale and bright blue) meet at each vertex of the
central triangulated dodecagon.

Figure 4
Magnified views of fragments of the P, D and G surfaces (see Fig. 3), with
three-dimensional Euclidean symmetry operations marked on the
surfaces. The arcs AB, BC and CA correspond to the two-dimensional
in-surface (non-Euclidean) reflections R2, R1 and R3, respectively, for all
three surfaces (see main text). Left: The P surface, with Im3m symmetry
(including isometries that swap sides of the surface; these are coloured
differently here for clarity): A, B and C are located at the 12d (site
symmetry 4m2), 24h (mm2) and 8c (3m) sites, respectively; AB and BC lie
in orthogonal mirror planes, CA is a twofold axis. Middle: The D surface
(Pn3m): A, B and C are located at the 6d (42m), 12f (222) and 4c (3m)
sites, respectively; AB and BC are twofold axes, CA lies in a mirror plane.
Right: The G surface (Ia3d): A and C are located at the 24d and 16a sites,
with point-group symmetries 4 and 3, respectively; B lies on a twofold axis
that is normal to the surface.



complexity. The complexity is initially quantified by the

number of distinct symmetry classes of tile, also called the

transitivity class. Thus, a tiling in which every tile is related to

every other tile by a symmetry of the entire tiling is tile-1-

transitive. A tiling with k symmetrically distinct tiles is tile-k-

transitive. The transitivity class of a tiling is incremented by

splitting all symmetric copies of a chosen tile. The split

operations we allow involve adding a single edge to the

interior of a tile – either between a vertex and a non-incident

edge, between two different edges or between two non-

incident vertices.

The second distinction in complexity concerns the internal

symmetry of a tile. A tile is fundamental if no symmetry of the

entire tiling maps it onto itself. If the tile has internal

symmetries it is by definition nonfundamental. A nonfunda-

mental tile is obtained by gluing copies of a fundamental tile.

A gluing is possible across an edge of a fundamental tile if the

edge coincides with a mirror line, or has a centre of twofold

rotational symmetry at its midpoint. Alternatively, copies of

the fundamental tile may be glued around a vertex if it is the

fixed point of a rotational symmetry (i.e. at a cone or corner

point of the orbifold).

Following Huson (1993), we enumerate Delaney–Dress

symbols in the following order. Our enumeration differs

slightly from that in Huson (1993) and in Balke & Huson

(1996), because we exclude tiles with less than three edges (for

reasons given below).

(1) Start with the tile-1-transitive fundamental tilings with

the given orbifold. These tilings are called F-tilings. Coxeter

orbifolds (those of kaleidoscopic groups) have only one such

F-tiling; all other orbifold families have more than one.

(2) Determine all additional tile-1-transitive tilings by

applying glue operations to the F-tilings to obtain the FG-

tilings. Some example FG tilings are shown in Fig. 7.

(3) Determine all tile-2-transitive fundamental tilings by

applying split operations to each F-tiling. The resulting cases

are FS-tilings.

(4) Determine all possible tile-2-transitive nonfundamental

tilings by applying glue operations to the FS-tilings. The

results of a glue operation applied to a single tile class are

called FSG-tilings. When glue operations are applied to both

tile classes, we get an FSGG-tiling. See Fig. 8 for an illustration

of these split and glue operations.

(5) Continue with tile-3-transitive fundamental tilings

generated by two split operations, followed by up to three glue

operations, and so on.

The above procedure forms tilings ordered by tile-

transitivity class. In Table 4, we give the number of D symbols

for tile-1- and tile-2-transitive tilings within each of our 11

Coxeter orbifolds.

A simple way to generate additional tilings without further

split or glue operations is to introduce the dual operation

defined by replacing each tile by a vertex and joining these

vertices by an edge if the original tiles are adjacent. A number

of examples are given in Fig. 9. The dual tiling shares the

symmetry of the original tiling. In addition, it has reversed

two-dimensional topological characteristics: the degree of a

dual vertex is equal to the number of edges in the original

polygonal tile and a dual tile is a polygon of order equal to the

degree of the original vertex. This is why we require our tiles

to have at least three edges: so that the dual vertices are at

least degree three.

We do not quite double the number of D symbols by

appending the vertex-k-transitive duals to the tile-k-transitive

symbols. This is because some tilings are self dual, while other

symbols may be paired as mutually dual; examples are given in

Fig. 9. From our lists of tile-1-transitive tilings in the 11

Coxeter orbifolds we find three self-dual D symbols: a regular

{6, 6} tiling (in ?266), a semi-regular (6, 6) tiling (?2323), and a

regular {12, 12} tiling (?2626).1 Among the tile-2-transitive

tilings we find 17 self-dual symbols. A pair of D symbols from
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Table 2
The mappings from H

2 translations to Euclidean lattice vectors for the
oriented P, D and G surfaces.

For the P surface the vectors form an orthonormal set. For the D surface
{a, b, c} are face-centred-cubic (f.c.c.) rhombohedral lattice vectors that meet
at 60� and have length 1=ð21=2Þ. The translational lattice for the G surface is
body-centred-cubic (b.c.c.), and the rhombohedral lattice vectors meet at
angles of 109.47� and have length ð31=2Þ=2 .The given lengths are with respect
to the standard (nonprimitive) cubic unit cell in each case.

Surface t1 t2 t3 �1 �2 �3

P (cubic) a b c c � b a � c b � a
D (f.c.c.) a � c b � a c � b �b �c �a
G (b.c.c.) �b �c �a b + c a + c a + b

Figure 6
The maximal subgroup lattice for the 14 kaleidoscopic subgroups of ?246.
The rectangular nodes denote a normal subgroup and ellipsoidal nodes
denote a conjugacy class of subgroups. The numbers in the right-hand
column are the subgroup index in ?246.

1 The Schläfli symbol (p, q) denotes a tiling by p-gons meeting at vertices of
degree q; the symbols {p, q} denote tilings by regular polygons.



the original tile-transitive enumeration are called ‘mutual

duals’ when they are the dual of one another – i.e. the dual

symbols are also obtained via a sequence of splits and glues

from the fundamental tile-transitive tiling. Such a pair gener-

ates just two distinct D symbols, rather than four. We find

three pairs that are tile-1- and vertex-1-transitive, 15 pairings

of a tile-1-, vertex-2-transitive tiling with a tile-2-, vertex-1-

transitive one, and 69 tile-2-, vertex-2-transitive pairs. Thus,

from our enumeration of 1450 tile-1- and -2-transitive D

symbols generated via split and glue operations, we obtain a

total of 2706 distinct D symbols after considering their duals,

corresponding to tilings whose symmetries are those of one of

the 131 subgroups. Among those distinct subgroup tilings, 95

examples are either vertex-1- or tile-1-transitive.

For ease of reference, we give each of the 2706 D symbols a

distinct name of the form QCn, where n = 1, 2, 3, . . . , char-

acteristic of a subgroup tiling. We capitalize letters to indicate

a tiling (as opposed to a net, whose name will contain lower-

case letters); ‘Q’ refers to the P, D and G family of TPMSs

with cubic symmetry; the letter ‘C’ indicates that the subgroup

tiling comes from the family of Coxeter orbifolds of the

(genus-3) cubic TPMS. The final part of the name is an index,

n, that is assigned according to a ranking of the 2706 distinct D

symbols by the following sort key:

ðminfv; tg; v; t;D symbolÞ:

Here v is the vertex transitivity, t is the tile transitivity and the

D symbol has a natural ordering discussed by Delgado-

Friedrichs (2003). Thus, the subgroup tilings QC1–QC95 are a

complete enumeration of (vertex or tile)-1-transitive tilings

with kaleidoscopic symmetry compatible with the P, D and G

surfaces, and QC96–QC2706 are all the 2-transitive tilings.

Should we choose to continue the split–glue sequence and

enumerate tile-3-transitive tilings, the new symbols generated

can be appended to the end of this list, since any duals that

happen to have lower vertex transitivity already appear in the

first 2706 subgroup tilings.

4. Embedding and unfolding Delaney–Dress symbols

In the previous section we described how to enumerate

Delaney–Dress symbols that encode the symmetry and

topology of tilings. Our next step is to take these abstract

representations of tilings and determine explicit realizations in

the hyperbolic plane that are compatible with the P, D and G

surface covering maps. We call this process embedding.

The embedding operation is a many-to-many mapping from

tilings in simply connected two-dimensional hyperbolic space

to tilings on the multiply connected

triply periodic minimal surfaces.

First, a single D symbol can have

multiple realizations that project

to distinct surface reticulations.

Second, two embedded D symbols

(from different subgroups, say) can

generate the same surface reticu-

lation. Clarification of the embed-

ding process involves subtleties

that require us to go beyond

Delaney–Dress tiling theory, since

the standard theory is applicable to

simply connected spaces only. In

order to enumerate distinct tilings

of a multiply connected TPMS, we
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Figure 7
Three tile-1-transitive tilings of the hyperbolic plane with orbifold symmetry ?246: the fundamental tiling
(a), and two of the six possible glued tilings (b, c). (b) is obtained from a vertex gluing and (c) from an
edge gluing. The background colouring respects ?246 symmetry.

Table 3
The 14 kaleidoscopic symmetry groups compatible with the P, D and G surfaces.

No. in Robins
et al. (2004a)

Subgroup
name

Index in
?246 Subgroup generators

131 ?246 1 R1, R2, R3

127 ?266 2 R1, R3, R2R3R2

125 ?344 2 R2, R3, R1R3R1

124 ?2223 2 R1, R2, R3R1R3, R3R2R3

123 ?2224 3 R1, R2, R3R2R3, R3R1R3R1R3

119 ?2323 4 R3, R1R3R1, R2R3R2, R1R2R3R2R1

107 ?2244ðaÞ 6 R2, R3R2R3, R3R1R3R1R3, R1R3R2R3R1

103 ?2244ðbÞ 6 R1, R3R2R3, R3R1R3R1R3, R2R3R1R3R1R3R2

102 ?25ðaÞ 6 R1, R2, R3R2R3, R3R1R3R2R3R1R3, R3R1R3R1R3R2R3R1R3R1R3

101 ?25ðbÞ 6 R1, R2, R3R1R3R1R3, R3R2R3R1R3R2R3, R3R2R1R3R1R2R3

96 ?2626 8 R1, R3, R2R3R1R3R1R3R2, R2R3R1R2R3R1R3R2R1R3R2

64 ?4444 12 R3R2R3, R3R1R3R1R3, R1R3R2R3R1, R2R3R1R3R1R3R2

83 ?26ðaÞ 12 R1, R3R1R3R1R3, R3R2R3R1R3R2R3, R3R2R1R3R1R2R3, R2R3R1R3R1R3R2, R2R3R2R1R3R1R2R3R2

55 ?26ðbÞ 12 R2, R3R2R3, R1R3R2R3R1, R3R1R3R2R3R1R3, R1R3R1R3R2R3R1R3R1, R3R1R3R1R3R2R3R1R3R1R3



require an explicit representation of the tiling in the ���

translational domain. Finding such a representation is called

unfolding. We call these embedded and unfolded tilings

U-tilings.

Before proceeding further, we must clarify what we mean

by ‘the same surface reticulation’. Since our periodic minimal

surfaces have a high degree of symmetry, we say that two

surface tilings are equivalent if their Delaney–Dress chamber

systems are related via a symmetry of the surface, otherwise

they are distinct. Symmetries of the surface pull back (through

the covering map) to ?246 symmetries in the hyperbolic plane,

so two U-tilings project to equivalent surface reticulations if

their D chambers are related via a symmetry from ?246.2

The process of generating an unfolded D symbol involves a

number of steps, whose degree of complexity depends on the

symmetry of the original D symbol. To clarify the description,

we first discuss the construction for tilings with ?246 symmetry

(x4.1); tilings with other Coxeter orbifolds are discussed later

(x4.2).

4.1. Tilings in ?246

First, we introduce a triangulation of the tritorus, called the

?246=T chart. This chart forms a bridge between geometry in

H
2 and the group structure of ?246 modulo the ��� transla-

tional domain. We then describe how to embed a D symbol in

a ?246 fundamental domain. Finally, we use the ?246=T chart

as a scaffold to unfold the ?246 D symbol into one with ���

symmetry.

4.1.1. The ?246=T chart. The ?246=T chart is a triangula-

tion of a tritorus with triangles labelled by the 96 distinct ?246

words that represent elements in the ?246=T quotient group.

This chart forms the basis for unfolding a D symbol with ?246
symmetry into a D symbol with ��� symmetry. We make an

explicit connection between the geometry of the ?246 trian-

gulation and the reflection group, using the process described

below (Fig. 10 will assist visualization).

(1) First, we list the 96 distinct elements of the quotient

group ?246=T. We do this using the GAP package kbmag (an

acronym for Knuth–Bendix in Monoids and Groups),

although any coset enumeration algorithm will suffice (The

GAP Group, 2002; Holt, 1998). The quotient-group cosets are

represented by minimal words in the reflections R1, R2, R3.

The kbmag enumeration uses a short-lex ordering derived

from a given order for the generators. The 96 elements are

listed in full in Appendix C, Table 15.

(2) The ?246 fundamental domain is a triangle bounded by

mirror lines that meet at angles �/2, �/4 and �/6. A funda-

mental tiling of H2 consists of these domains with 4, 8 and 12

triangles meeting at ?2, ?4 and ?6 corner points, respectively.

We pick an initial triangle and give it the label of the identity

element, I.
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Figure 8
A sequence of tilings illustrating how tile-k-transitive tilings are created
from fundamental (F) tilings by split (S) and glue (G) operations. The
?2223 fundamental tile-1-transitive F tiling is split into a tile-2-transitive
tiling of type FS. Two complementary gluing operations produce two new
tile-2-transitive tilings of type FSG. Finally, by applying both of these glue
operations we obtain a tiling of type FSGG.

Table 4
A summary of our D-symbol enumeration.

Tilings are enumerated within each symmetry orbifold and grouped according
to the glue and/or split operations required to generate the tiling symbol. As
explained in the text, each tiling symbol effectively represents two tilings: the
tile-transitive version and its vertex-transitive dual. The total number of
distinct tiling symbols found within each orbifold is also listed.

1-Transitive 2-Transitive

Orbifold symbol F FG FS FSG FSGG No. of tilings

?246 1 6 6 42 56 204
?266 1 4 4 22 30 112
?344 1 4 4 22 38 128
?2223 1 5 10 71 115 366
?2224 1 5 10 71 115 366
?2323 1 3 7 37 67 216
?2244 1 5 9 69 123 394
?25 1 2 5 34 68 201
?2626 1 3 7 37 67 216
?26 1 2 7 53 130 375
?4444 1 2 4 19 39 128

Total 52 1398 2706

2 There is an important exception to this when considering chiral tilings
projected onto the G surface; see Robins et al. (2005) for details. Chirality (in
H

2) is not an issue here, since we are working with kaleidoscopic symmetry
groups.



(3) Since the reflections R1, R2 and R3 map the identity

triangle onto its three neighbours, these triangles are labelled

accordingly. The R1 triangle is the neighbour opposite the ?4
corner point, R2 lies across the shortest edge (opposite the ?6
corner), and R3 is the neighbour sharing the hypotenuse of the

identity ?246 triangle, opposite the ?2 point.

(4) We continue labelling each triangle by the minimal

R-word that maps the identity triangle onto it. By continuity,

the neighbours opposite the ?4, ?6 and ?2 corners of a given

triangle, V, will be VR1, VR2 and VR3. For example, the

neighbours of R1 are R1R1 = I, R1R2 and R1R3, and the

neighbours of R2 are R2R1 = R1R2, R2R2 = I and R2R3. The

process of converting each neighbour-word VRi to its minimal

version is called word reduction, and is performed using the

kbmag package.

(5) The translational periodicity is encoded by performing

word reduction within the ?246=T quotient group, rather than

the full ?246 group. The diagram in Fig. 10 shows, for example,

the ?2-neighbour of triangle V, with label VR3, which lies

outside the 96 elements of the dodecagon. In fact triangle VR3

is the image of triangle W under the translation t2. In the

quotient-group word reduction, we find VR3 ! t2W. Thus, in

the compact tritorus, triangles V and W are neighbours along

the edge opposite their ?2 corners. We attach the t2 translation

to this adjacency information to mark a boundary or cut line

that enables us to convert from the compact surface triangu-

lation to the universal cover in H2. We also use the cut lines to

transform tilings and networks

from H
2 to surface reticulations in

E
3. This is described in x5.1.

There is a nice correspondence,

hinted at above, between the ?246
isometry that maps the identity

triangle onto some image triangle

and a path through the triangula-

tion starting at I. For example, the

isometry that maps the identity

triangle onto the W triangle is

R3R1R3R1R2R3R1, see Fig. 10. By

convention, the isometry operation

acts from the left, so the order of

successive reflections is read from

right to left. In contrast, the path

through the triangulation asso-

ciated with this ?246-word is read

from left to right. It starts at I, visits

its ‘R3-neighbour’ (the triangle

opposite its ?2-corner), then this

triangle’s ‘R1-neighbour’ (the

triangle opposite a ?4 corner) and

so on, ending at the triangle

labelled W. Similarly, triangle V is

reached by a path starting at I then

(reading from left to right) visiting

neighbours according to the word

R1R3R1R2R3R1, a twofold rotation

about the circled vertex in Fig. 10.

Finally, the translation that maps W onto VR3 may be

encoded by a path in the triangulation from W to VR3 passing

through I,

W�1
� V � R3 ¼ R1R3R2 R1R3R1R3 � R1R3R1 R2R3R1 � R3 ¼ t2:

Word reduction to the expression for t2 given in equation (1)

uses the identity ðR1R3Þ
6
¼ I which implies that the central

part of the word reduces as

R1R3R1R3R1R3R1 ¼ R3R1R3R1R3:

4.1.2. Embedding in ?246. We now return to Delaney–Dress

symbols and the problem of embedding them in the hyperbolic

plane. Readers unfamiliar with Delaney–Dress theory should

refer to Appendix B for the relevant definitions.

The embedding of D symbols with ?246 symmetry is

simpler than other subgroups for two reasons. First, the

geometry of the fundamental domain is uniquely determined

by the angles of the hyperbolic triangle. Second, the three

distinct angles permit only one way to embed a D symbol into

this fundamental domain.

Consider, for example, the tile-1-transitive glued tiling

(shown in Fig. 7b). The D symbol for this tiling is given in

Table 5 and its embedding into the ?246 fundamental domain

is shown in Fig. 11. The D symbol has two chambers labelled a

and b that form a triangulation of the ?246 orbifold.

Embedding this symbol amounts to determining how the two
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Figure 9
Illustrations of duality. Each column shows a tile-2-transitive tiling above its dual vertex-2-transitive
tiling, together with orbifold and tiling class labels (where F, S and G refer to the fundamental tiling, split
and glue operations, respectively). The tilings with symmetry ?266 illustrate the general case in which the
dual D symbol is not present in the initial tile-transitive enumeration. In contrast, the tilings with
symmetry ?344 are both tile-2- and vertex-2-transitive. Each is generated via a different FSGG sequence
applied to the ?344 fundamental tiling, and this pair of tilings is called ‘mutually dual’. The third column
of tilings with symmetry ?2323 shows a self-dual example.



chambers sit within the ?246 triangle. Each triangular

chamber has a 0-, 1- and 2-vertex that correspond, respec-

tively, to a vertex of the tiling, an edge midpoint and a tile

centroid. First note that the D symbol specifies that a and b are

adjacent along their 0-edge, i.e. the chamber edge opposite a

vertex of the tiling, and that a and b are self-adjacent across

their 1- and 2-edges. This means that the 0-edge is internal to

the ?246 domain and the 1- and 2-edges lie along mirror

boundaries. The topological indices m12 specify the degree of

the tile vertex that sits at the 0-vertex of each chamber. So the

0-vertex of a has degree 6 and the 0-vertex of b has degree 4.

This tells us that the 0-vertex of a must sit at the ?6 corner and

the 0-vertex of b must sit at the ?4 corner. Finally, the index

m01 specifies the order of the tile centred at the 2-vertex of a

chamber. For this example, the single tile is a quadrilateral and

the 2-vertex (of both a and b) sits at the ?2 corner.

In general, we know that the chambers of the D symbol

must form a triangulation of the ?246 fundamental domain.

We therefore need to identify the chamber edges that lie along

mirror boundaries, and chamber walks that trace a circuit

around each corner point of the ?246 triangle. This informa-

tion comes from the adjacency information and the topolo-

gical indices given by the D symbol. Once the mirror

boundaries and corner points are identified, we can deduce the

embedding of the remaining chambers into the fundamental

domain.

4.1.3. Unfolding into the tritorus. Once we know how a D

symbol sits inside the ?246 fundamental domain, we can use

the ?246=T chart to unfold this D symbol to cover the tritorus

and thus obtain a larger D symbol with ��� symmetry. The

process involves a straightforward tile-rewriting procedure,

described below for the ?246 fundamental tiling, and illu-

strated in Fig. 12.
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Table 5
The Delaney–Dress symbol for the glued tiling ?246 FG 3.

a b

0-nbr b a
1-nbr a b
2-nbr a b
m01 4 4
m12 6 4

Figure 11
The chamber system for the glued (FG) tiling of ?246 (cf. Fig. 7b and
Table 5). Only a single ?246 fundamental domain is shown, with the two
chambers a and b labelled in blue, and their 0-, 1-, and 2-vertices marked
in red. Tile edges and vertices are shown by heavy black lines and dots.
Thin black lines lie between chambers that are 1-neighbours and dashed
lines lie between chambers that are 0-neighbours.

Figure 12
Unfolding the D symbol of the fundamental ?246 tiling into the
topologically equivalent tiling with symmetry ��� (the unfolded D
symbol). The inset shows the chamber labelling (darker labels) of three
fundamental domains. Chambers that are equivalent under a ?246
symmetry have identical labels modulo 6. The red labels mark the 0-, 1-
and 2-vertices of the chamber system.

Figure 10
The 96 translationally distinct ?246 triangles in the ��� domain for the P,
D and G surfaces are shaded light and dark grey. The 12 domains
bordering the central dodecagon are the images of the central polygon
after translation by t1, t2, t3, �1, �2 and �3. The triangles labelled R1, R2 and
R3 are the appropriate images of the identity triangle I after reflection.
The triangle labelled V is the image of I under a �/2 rotation about the
circled vertex. The R3 neighbour of triangle V, VR3, lies outside the
central dodecagon and is a translate of the triangle labelled W, i.e., VR3 =
t2W.



The D symbol for ?246 F contains six chambers labelled 0

to 5. Since the ?246=T chart has 96 triangles, the ���D symbol

derived from ?246 F will have 576 chambers. These chambers

are labelled so that chamber n is symmetrically equivalent to

chamber n [modulo(6)], see Fig. 12. In this example, the

chamber adjacencies opposite 0- and 1-vertices are exactly

those derived from the ?246 F symbol. The adjacencies across

2-edges map from one tile into its neighbour, so these relations

are derived from the ?246=T chart structure. The cuts defined

on the ?246 chart are also attached to the appropriate

D-chamber adjacencies and recorded as information addi-

tional to the standard D-symbol form. These cuts effectively

define the embedding of the ��� D symbol into the T

subgroup of ?246.

The glue and split operations described in x3 preserve the

symmetry group, so their chambers cover the same funda-

mental orbifold domain. Thus, unfolding D symbols associated

with tilings generated via split and glue operations proceeds in

almost identical fashion to that for the fundamental tiling

described above.

4.2. Tilings in other kaleidoscopic subgroups

Consider next the construction for D symbols whose

symmetries are kaleidoscopic subgroups of ?246. The

embedding and unfolding of those D symbols proceeds in

essentially the same manner as described for ?246. However,

we shall see that D symbols for subgroups of ?246 can embed

in more than one way, further complicating the construction,

but giving additional surface reticulations.

4.2.1. Building a subgroup chart. The ?246 chart is built

from knowledge of the quotient-group structure, i.e. explicit

representation of the ti, �i translations in terms of the R1, R2,

R3 reflections. Although we constructed the 131 subgroups to

have the ti, �i translations as elements, we do not have explicit

expressions for the ti, �i translations as words in the subgroup

generators, so it is simpler to use a combinatorial procedure

to obtain the subgroup charts. For the 14 kaleidoscopic

subgroups this is feasible because each subgroup fundamental

domain is built from k whole ?246 triangles, where k is the

index of the subgroup.

To obtain a fundamental domain for a kaleidoscopic

subgroup we use the coset labelling of ?246 triangles by the

subgroup action. A contiguous set of k distinct coset elements

gives us a fundamental domain. For example, ?2323, an order-

4 subgroup of ?246, has a fundamental domain built from the

four ?246 triangles labelled I, R1, R2 and R1R2, as shown in Fig.

13. This ?2323 domain is replicated by reflections in its

boundaries, and we use a cumulative algorithm to acquire one

fundamental domain at a time. For example, a neighbouring

fundamental domain is the set of triangles labelled {R3, R3R1,

R3R2, R3R1R2}, i.e., the image under R3 of the initial domain.

The number of subgroup fundamental domains that covers the

tritorus is 96/k, so the ?2323=T chart has 24 quadrilaterals.

The final step in building the ?2323=T chart is to identify

new cut lines that follow ?2323 domain boundaries. Starting

from an initial ?2323 domain, we grow out one ?2323 domain

at a time with the aim of keeping the region as circular as

possible in the hyperbolic plane. This region is shown high-

lighted in Fig. 13. Eventually, the growing region will meet

itself on the genus-3 surface. The edges where this occurs

define new cut lines for unwrapping the tritorus into the

hyperbolic plane. The translation associated with each cut line

is found by tracing a path through the underlying ?246=T

chart that is constrained to pass through the I triangle and the

cut-line edge. The path defines a ?246-word that reduces to a

��� translation under kbmag word reduction.

4.2.2. Embedding and unfolding in a subgroup chart. The

embedding and unfolding of D symbols into a subgroup chart

uses the same feature identification and tile-rewriting proce-

dures described earlier for ?246. However, fundamental

domains for the subgroups are not as constrained as the ?246
triangle, and this means some D symbols have more than one

embedding compatible with the covering map. There are two

routes to generating these multiple embeddings: distinct

subgroups with the same orbifold and automorphisms of a

subgroup fundamental domain. We illustrate each of these

situations below.

First, recall from Table 3 that three orbifolds (?2244, ?25

and ?26) appear as pairs of distinct subgroups of ?246. The

different subgroup structures guarantee that these pairs have

distinct subgroup charts. Thus, every D symbol from one of

these orbifolds has two distinct embeddings in H
2. An

example from ?25 is illustrated in Fig. 14. Although the two

embeddings have identical topology, they are not related by a

symmetry of ?246, and therefore project to different surface

reticulations. The difference is also apparent via unfolding in
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Figure 13
The ?2323 subgroup chart. A fundamental domain for ?2323 is built
from the four ?246 triangles labelled I, R1, R2 and R1R2. Twenty-four of
these quadrilateral domains are needed to fill out a translational unit cell.
One possible set of 24 quadrilaterals is the highlighted (18-sided)
polygonal domain. The dodecagon bounded by yellow edges marks the
translational unit cell described in Fig. 10. Note how the highlighted
domain differs from the (yellow) dodecagon by displacing a triangle from
one edge to the diagonally opposite one.



the respective subgroup charts: a single D symbol embedded

in two distinct subgroup charts generates distinct ��� D

symbols.

Second, automorphisms of the kaleidoscopic subgroups are

manifested as abstract symmetries of their fundamental

domains, which may or may not be associated with symmetries

from ?246. Multiple embeddings of a D symbol are possible

when the subgroup domain has automorphisms that are not

induced by an element of ?246. If the tiling does not display

the corresponding automorphism of its D chambers, then it

has two distinct embeddings that are not related by a ?246
symmetry and therefore map to inequivalent surface reticu-

lations. The kaleidoscopic subgroups with automorphisms that

can produce distinct embeddings of D symbols are ?2224,

?25ðaÞ, ?25ðbÞ, ?2626, ?4444 and ?26ðaÞ.
We illustrate this situation with an example. The subgroups

?2223 and ?2224 both have quadrilateral fundamental

domains and an automorphism that swaps the two opposing ?2
corner points (see Fig. 15). The automorphism of ?2223 is

defined by conjugacy with the ?246 R3 reflection, so auto-

morphic embeddings of a D symbol will project to equivalent

surface reticulations. The geometry of the ?2224 subgroup

domain shows that the automorphism of its domain is not a

?246 conjugacy. Now suppose we have a D symbol that is

embedded in the ?2224 domain, and consider the effect of the

subgroup automorphism. Clearly this induces a new embed-

ding of the D symbol, which may or may not be equivalent to

the original embedding. Equivalence occurs only when the D

symbol has an automorphism of its chambers that corresponds

to the automorphism of the subgroup domain. Thus, a split

tiling where the extra edge divides the domain into two

quadrilaterals (as in Fig. 16) will have two distinct embeddings,

but a split between two opposite vertices will not.

We conclude this section by discussing the effects of a

subgroup automorphism on the translation subgroup, T, and

the corresponding unfolded ��� D symbols. There are two

possibilities: the subgroup automorphism may or may not

induce an automorphism of T. If T is preserved, then the two

embeddings of a subgroup D symbol will unfold to isomorphic

��� D symbols. If T is not preserved, then distinct ��� D

symbols are generated. The only kaleidoscopic subgroup

where we see distinct embeddings of a tiling that unfold to

equivalent ��� D symbols is ?2626. This is due to an auto-

morphism of ?2626 that swaps the role of the ti and �i

generators of T. This automorphism is not generated by a

?246 isometry but nonetheless preserves the T subgroup, so

the unfolded ��� D symbols are isomorphic. An example is

shown in Fig. 17.

5. Surface tilings

Our enumeration so far has taken

distinct D symbols from each

Coxeter orbifold, found all possible

embeddings of these symbols into

the kaleidoscopic subgroup

domains, and unfolded them into

corresponding tritorus charts. The

result is 14 lists of subgroup tilings

and their unfolded ��� D symbols

augmented with ‘cuts’ that deter-

mine their embedding in the T

subgroup. Since these tilings are

obtained via unfolding and are

embedded in the universal cover of

the triply periodic minimal

surfaces, we call them U-tilings. In

this section we describe how to

determine a unique representative

for each distinct U-tiling. These

tilings are compatible with the

surface covering maps, and so

project onto the P, D and G

surfaces giving E-tilings. Finally, we

also consider tilings of the tritorus,

or O-tilings, obtained from these

U-tilings.

5.1. U-tilings

In x4 we described how to

generate distinct embeddings of D
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Figure 14
The orbifold ?25 appears as two distinct subgroups of ?246. The top row shows the tilings resulting from
the subgroup labelled ?25ðaÞ in Table 3; the bottom row shows analogous cases for ?25ðbÞ. Fundamental
tilings in the hyperbolic plane for each subgroup are illustrated on the left. In each case we show a single
tile broken into ?246 triangles and a highlighted translational domain. The central column displays
fundamental tilings wrapped onto the P surface using the covering map, forming E-tilings (whose edges
and vertices describe e-nets). The irregularly shaped unit cells correspond exactly to the highlighted
region in the hyperbolic plane images to the left. The right column shows s-nets derived from the E-tilings
by forming the most symmetric Euclidean embeddings of the e-net topologies. Tiling and net labels are
described in xx5.1 and 6.3.



symbols within each kaleidoscopic subgroup of ?246. Each

U-tiling is represented by a ��� D symbol augmented with

cuts and its precursor D symbol. This extra information

defines the embedding of the tiling in the ?246=T domain. We

determine which U-tilings generate equivalent surface reti-

culations as follows.

Recall from the introduction to x4 that two tilings of a

TPMS are equivalent if their chamber systems are related via a

symmetry of the surface. Thus, two U-tilings are distinct if they

have distinct ���D symbols, or if they are distinct embeddings

of the same ��� D symbol. The first situation is easy to test

using combinatorial tiling algorithms. The second requires the

additional information about the embedding of the U-tilings

in the T subgroup, either from the cuts, or from an under-

standing of the embedding and unfolding process. By their

construction, the U-tilings generated within a particular

subgroup chart are distinct. However, two U-tilings defined

via different subgroup charts may have the same ��� D

symbol and equivalent ‘cuts’. This occurs when the two

precursor D symbols and their embeddings are related by

symmetry raising or lowering within the ?246 subgroup lattice

(see Fig. 6). An example is shown in Fig. 18, where we see a

vertex-1-transitive tiling with symmetry ?2224, and two

different symmetry lowerings to vertex-2-transitive tilings in

the subgroups ?4444 and ?26ðbÞ. The three U-tilings have

isomorphic ��� D symbols and equivalent embeddings.

We next consider the union of the 14 lists of U-tilings,

determine equivalence classes by comparing the ��� D

symbols as described above, and find that there are 6079

distinct U-tilings. We assign them names of the form UQCn,

where ‘Q’ and ‘C’ stand for cubic and Coxeter. The running

index n is determined by ranking the distinct U-tilings by their

��� D symbols (cf. x3). If two distinct U-tilings have the same

��� D symbol, as for the ?2626 example of Fig. 17, they are

listed in arbitrary order. In Table 6, we give the number of

U-tilings found within each kaleidoscopic subgroup. We count

each equivalence class of U-tilings just once, in the subgroup

of the precursor tiling that has the

highest symmetry.

5.2. E-Tilings

We now map each U-tiling from

the hyperbolic plane onto the P, D

and G periodic minimal surfaces,

forming E-tilings, where ‘E’ refers

to Epinet. Each distinct U-tiling

UQCn maps to exactly three

E-tilings and we give these the

directly corresponding names,

EPCn, EDCn and EGCn; see Fig.

19. The E-tilings are the bridge

between two-dimensional and

three-dimensional structure that

our enumeration scheme is built

around. They are two-dimensional

because they are defined almost

entirely by the U-tiling; three-

dimensional structure is given by

the covering map and the geometry

of the particular TPMS. More

specifically, we use the covering

map action on the hyperbolic

translations, ti; �i 2 T (as summar-

ized in Table 2 of x2) to map the

cuts attached to the ��� D symbol

into Euclidean translations. The
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Figure 15
Fundamental tilings for the ?2223 and ?2224 subgroups, each shown with
a single domain subdivided by ?246 triangles. The automorphism
swapping the two opposite ?2 corners of ?2223 is generated by a ?246
isometry, but this is not the case for ?2224. This leads to multiple
embeddings of some D symbols in ?2224.

Figure 16
Left: two U-tilings with ?2224 symmetry obtained via a split from a ?2–?2 edge to the opposite ?2–?4
edge, followed by a glue across the other ?2–?4 edge, derived from QC2566. These tilings are distinct
embeddings of a single D symbol and therefore generate different surface reticulations. To illustrate this,
we show the projections onto the P surface (centre) and resulting s-nets (right). Tiling and net labels are
described in xx5.1 and 6.3.



E-tiling, then, is represented by the same pair of subgroup

tiling and ��� D symbol as the U-tiling, but the cuts are

written as Euclidean translations, rather than hyperbolic ones.

The space-group symmetries of the E-tilings can be found

by considering the covering map action in more detail. Recall

from x2 that the covering map induces a group homo-

morphism, � : ?246! S, where S is the space group of the

non-oriented surface. The map � is an explicit relationship

between the hyperbolic reflections R1, R2 and R3, and Eucli-

dean isometries from S. If we now restrict the action of � to

one of the kaleidoscopic subgroups, � � ?246, then the image

�ð�Þ is a subgroup of the Euclidean space group S, giving an

elegant correspondence between two-dimensional hyperbolic

(discrete) groups and three-dimensional Euclidean space

groups. This procedure will be explored in detail in a future

publication. We give the surface space groups that correspond

to each kaleidoscopic subgroup in Table 6.

5.3. O-Tilings

Our hyperbolic tilings also define tilings of the tritorus,

which we call O-tilings. These tilings are formed by wrapping

U-tilings onto the tritorus, whose structure is explained in

x4.1.3. We distinguish O-tilings by the distinct ��� D symbols.

In our current enumeration we find 5912 O-tilings. This is less

than the number of distinct U-tilings (6079) because of the

?2626 examples discussed at the end of x4.2.2.

6. Nets from tilings

In this section we consider the nets derived from the vertices

and edges of tilings. Various definitions of the word ‘net’ can

be found in the literature; we use the term here to denote a

graph embedded in a metric space. Specifically, we investigate

nets embedded in the hyperbolic plane, the tritorus and the

periodic minimal surfaces, called h-nets, o-nets and e-nets,

respectively. Finally, we discard possible edge entanglements

present in the e-nets to study their topology and maximal-

symmetry embedding in E3, and call the resulting structures

s-nets. h-nets remain embedded in their parent space – the

hyperbolic plane – while o-, e- and s-nets are embedded in

three-dimensional Euclidean space.

There is a simple canonical form for h-nets that allows

different net topologies to be readily distinguished in the

hyperbolic plane. Some care must be taken, however, in

defining the equivalence class of three-dimensional embedded

nets, namely the e-net, o-net and s-net categories. Trivial

geometric deformations of a particular embedding are of little

interest to us. Nontrivial deformations may include those that

change the entanglement of edges within the graph, or the

graph topology. We define equivalence classes for o-nets and

e-nets to include all graph embeddings related by deforma-

tions that do not involve edges crossing. Accordingly, one of

our goals is to determine equivalence classes of nets under

ambient isotopy: i.e., two nets are equivalent if their embed-

ding space can be continuously deformed in such a way as to

map one onto the other without allowing edges to pass

through each other. This leads to the distinction between

variously entangled versions of a net as inequivalent o- or

e-nets, akin to the distinction between inequivalent entan-

glements of a loop in space as different knots. Finally, the

equivalence class of s-nets includes all nets with identical

graph topology. As for h-nets, there is a canonical form for

s-nets that allows most distinct examples to be readily iden-

tified.

6.1. h-Nets

As illustrated in Fig. 20, many tilings can carry the same net

topology. Since a Delaney–Dress symbol encodes both

topology and symmetry, such tilings have different D symbols.

Clearly then, the number of distinct h-net topologies will be

less than the number of distinct subgroup tilings enumerated

in Table 4 of x3.

We adopt the convention that an h-net should be repre-

sented by a tiling with maximal possible symmetry. The

process of finding the highest-symmetry version of a given

tiling is rather simple using combinatorial tiling theory – it

amounts to computing the minimal image3 of the D symbol

(Delgado-Friedrichs, 2003). Since minimal-image D symbols

classify nets up to homeomorphism in the hyperbolic plane,

they are a canonical form for h-nets.

We obtain a list of 2451 distinct h-net topologies by applying

the minimal-image algorithm to the 2706 subgroup tilings

lead articles

94 S. J. Ramsden et al. � Euclidean nets from hyperbolic tilings Acta Cryst. (2009). A65, 81–108

Figure 17
Two embeddings of a split tiling of ?2626, related via an automorphism of
?2626 that swaps the role of ti and �i translations in the T subgroup. Tiling
labels are described in x5.1.

Figure 18
Three subgroup tilings in the equivalence class for the U-tiling UQC24.
The tilings with symmetry ?4444 and ?26ðbÞ are two different symmetry
lowerings of the tiling with symmetry ?2224. In each case a single
fundamental domain is highlighted.

3 Here the term ‘minimal’ refers to the length and ordering of the symbol, and
should not be confused with minimal surfaces.



referred to in Table 4. The results are presented in Table 7 and

are organized by the orbifolds of the minimal-image D

symbols. Although we start with D symbols from kaleido-

scopic subgroups of ?246, the resulting h-nets have a broader

range of symmetry types, for example 2 ? 26, a hat orbifold

with a single cone point and mirror boundary. Further, the

h-net symmetry need not be one of the 131 subgroups of ?246,

for example, ?248. This is because the minimal image of a D

symbol may form a tiling whose symmetries are a supergroup

of the symmetries of the initial tiling. This catalogue of h-nets

will allow us to compare reticulations across different classes

of TPMSs.

6.2. e-Nets

We call the edge skeletons of the E-tilings of the three-

periodic minimal surfaces e-nets, where ‘e’ again refers to

Epinet. Recall that distinct e-nets are characterized by

embeddings in three-dimensional space which cannot be

deformed to each other without edge crossings or changes in

the underlying graph topology.

Thus, in particular, different e-nets

may have identical topology. The

situation is analogous to distinct

knottings of a loop, characterized

by ambient isotopy (Adams, 2004).

Since an e-net inherits the

embedding of an E-tiling in the

topologically complex TPMS, its

edges may exhibit complex entan-

glements in three-dimensional

space induced by windings about

surface channels; for example,

e-nets can be self-catenated (as in

Fig. 24).

e-nets may also be multigraphs,

with more than one edge linking a

pair of vertices. These multigraphs

can arise from two sources. The

distinction between these two

scenarios lies in the different types

of edge cycles that emerge in

E-tilings: those that bound a tile

and lie wholly in the surface, called

‘null-homotopic rings’, and those

that do not bound a patch of the

surface. The former cycles are

found in the two-dimensional

universal cover, the latter are not.

Therefore the first examples are

caused by h-nets that are them-

selves multigraphs; these are

generated as follows. Our

Delaney–Dress tiling enumeration

allows tilings with adjacent tiles

that share more than a single edge;

examples are readily generated by
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Figure 19
A single hyperbolic tiling – here a vertex-2-transitive ?246 tiling formed by a sequence of split and glue
operations – generates three distinct E-tilings on the P, G and D surfaces. The edges and vertices of
E-tilings describe e-nets (epc473, egc473 and edc473, respectively). Canonical embeddings induced by the
e-net topologies result in the distinct s-nets, shown below their E-tiling antecedents.

Table 6
The 14 kaleidoscopic hyperbolic symmetry groups compatible with the P,
D and G surfaces.

The number of distinct U-tilings generated from each subgroup is given in the
second column (cf. Table 4). The P, D and G tiling columns list the Euclidean
space groups of the surface reticulations that arise from each hyperbolic
symmetry.

Subgroup name No. of U-tilings P tiling D tiling G tiling

?246 204 Im3m Pn3m Ia3d
?266 92 Pn3m Fd3m Ia3
?344 108 Pm3n P43m I43d
?2223 336 Pm3m P4232 I4132
?2224 694 I4=mmm P42=nnm I41=acd
?2323 183 P4232 F43m I213
?2244ðaÞ 366 P42=mmc P42m I42d
?2244ðbÞ 370 P4=nmm I41=amd I41=a
?25ðaÞ 889 P4=mmm P4222 I4122
?25ðbÞ 893 Fmmm Cmma Fddd
?2626 396 R3m R3m R3
?4444 211 P4m2 I4m2 I4
?26ðaÞ 1026 Cmma Imma C2=c
?26ðbÞ 327 Pmmm P222 I212121



gluings across mirror lines incident to ?2 vertices. An example

of such a tiling is shown in Fig. 21(a). The duals of these tilings

are necessarily multigraphs, with a pair of edges linking the

vertices corresponding to multi-edge sharing faces in the

original tiling (Fig. 21b).

Alternatively, some h-nets that are themselves simple

graphs give rise to e-net multigraphs as a result of the covering

map action. The simplest examples occur when two edges

lying on opposite sides of a channel join the same two vertices.

The resulting e-net therefore contains a double bond.

We label e-nets epcN, edcN and egcN, where ‘e’ stands for

Epinet, ‘p’, ‘d’ and ‘g’ denote one of the three TPMSs, and ‘c’

refers to the Coxeter orbifold family. The value of the index,

N, depends on the net embedding in E3, up to edge entan-

glement. Consider, for example, an e-net generated from the

E-tiling EDCN. The name of this e-net is determined as

follows. First, we compare the candidate e-net with the accu-

mulated list of distinct e-nets generated from simpler tilings,

viz epcJ, egcJ and edcJ, where J 2 f1; . . . ;N � 1g. If our

candidate net is equivalent to a previous e-net, say epcN0,

where N0<N, the tiling does not result in a new e-net.

Formally, the e-net name is remapped to epcN0 and the label

edcN is unused. If the candidate is distinct from the list of

‘lower’ e-nets, it is labelled by the new name edcN, where N is

exactly the same index as that of the corresponding E- (and

U-) tiling. Thus the maximum index number used is less than

or equal to the total number of e-nets, due to unfilled labels

wherever the E-tiling skeleton is ambient isotopic to a

previous e-net. This schema allows the indexing of e-nets to

remain in register with the indexing for E- and U-tilings,

thereby explicitly retaining links to precursor tilings of e-nets.

An uncharacteristically degenerate example is given by

regular and semi-regular (4, 6) and (6, 6) tilings of the P and D

surfaces. The U-tilings and E-tilings are illustrated in Fig. 22.

Those four cases, derived from four distinct subgroup tilings

(see Table 8), generate equivalent e-nets whose simplest

embedding (identical to the s-net, sqc947) is illustrated in Fig.

23. Since the lowest E-tiling index found among these exam-

ples is EDC1, all four e-nets map to edc1. This example

demonstrates the phenomenon of collapse of distinct U- and

E-tilings to a single e-net.

A major issue remains unresolved here, which we hope to

explore in detail later. In contrast to h- and s-nets, we have yet

to produce an algorithm for determining equivalence or

otherwise of e-nets. The problem is related to that of identi-

fication of distinct knots, a central topic of knot theory. We

suspect that our problem can be approached by forming a

canonical embedding for e-nets. For now, we can only deter-

mine ‘by inspection’ whether e-nets are ambient isotopic.

Equivalent e-nets are also necessarily topologically equiva-

lent; we therefore first check for graph isomorphisms by

comparing the e-nets’ topological structure. In many cases,

that can be done by forming a barycentric embedding, giving
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Table 7
The distribution of h-nets formed by symmetrizing the subgroup tilings as
much as possible.

Orbifolds are grouped into three classes. The most populated class is that of
Coxeter orbifolds from the original 11 orbifolds associated with the P, D and
G surfaces. Two further classes are listed (separated by blank rows): Coxeter
orbifolds outside the P, D and G class, and hat orbifolds. The total number of
h-nets derived from the symbols enumerated in Table 4 is 2451; only 126 of
these have symmetries different from the original 11 orbifolds.

Orbifold No. of h-nets

?246 204
?266 92
?344 108
?2223 336
?2224 326
?2323 167
?2244 358
?22222 161
?2626 168
?222222 314
?4444 91

?248 28
?446 14
?488 14
?2ð12Þð12Þ 11
?24ð12Þ 10
?2226 4
?288 3
?23ð18Þ 2
?238 2
?239 2
?245 2
?334 2

2 ? 23 10
2 ? 26 10
2 ? 222 6
2 ? 44 6

Total 2451

Figure 20
Three hyperbolic U-tilings with the same topology [Schäfli symbol (6, 4)]
but distinct symmetries, highlighted by the background shading. All three
examples have the same h-net, hqc9, the most symmetric embedding
(?246) of a hyperbolic (6, 4) net.

Table 8
List of E-tilings on the P and D surfaces (Fig. 22) that generate equivalent
e-nets, all congruent to the s-net (sqc947) illustrated in Fig. 23.

Two distinct two-dimensional hyperbolic nets give rise to these D and P
surface E-tilings: {4, 6} (hqc5) and {6, 6} (hqc10).

QC No. (Group) hqc No. Tiling type UQC No. Surface

1 (?246) 5 FG (dual) UQC1 D
1905 (?2626) 5 FSGG UQC2 P

3 (?266) 10 FG UQC5 P
110 (?2626 10 FSGG (dual) UQC6 D



an s-net, described in the next section. If the s-nets differ, the

e-nets are necessarily distinct. If they are equivalent, we then

determine – currently by eye – whether the e-net embeddings

are ambient isotopic to the canonical embedding of their

common s-net. If they are, both e-nets are equivalent. If one

differs, they are inequivalent; if both differ we must look

further to establish whether they can be mutually deformed

without edge crossings to a common intermediate embedding.

Some nets cannot be analysed via this method due to vertex

‘collisions’ that occur in the barycentric embedding. In those

cases, comparison with an s-net is impossible. We must then

resort to other measures to compare net topologies, including

coordination sequences (Brunner & Laves, 1971) and

comparison of subgraphs, implemented in the Topos package

(Blatov, 2006).

We close this section with an example, shown in Fig. 24, that

illustrates many of the issues discussed here. The two e-nets

shown in Fig. 24(a) are generated by tilings of the gyroid (that

lie outside the Coxter class) and exhibit self catenation. The

e-nets cannot be compared via their s-nets, due to vertex

collisions in their respective barycentric embeddings.

However, they share identical coordination sequences (to

shell 24) and certain finite subgraphs strongly pointing to their

topological equivalence. Their embeddings are not ambient

isotopic, evidenced, for example, by the distinct link types

highlighted in Fig. 24(b). These are the (2, 4) and (2, 6) torus

links (Adams, 2004), distinguished by their distinct threadings

through each other. These are thus distinct e-nets, despite

their topological equivalence.

6.3. s-Nets

We have noted above that different E-tilings can define the

same e-net (in Fig. 22) and that different e-nets may share a

common periodic net topology (Fig. 24). In general there is no

effective algorithm to determine when two crystal nets are

topologically identical. However, for a large class of ‘collision-

free’ Euclidean nets, the Systre algorithm furnishes a canonical

form for the quotient graph of a net (Delgado-Friedrichs &

O’Keeffe, 2003). We call these canonical forms s-nets.

The Systre algorithm [available as part of the GAVROG

package (Delgado-Friedrichs, 2006)] is based on finding the

barycentric embedding (or equilibrium placement) for the net:

each vertex is located at the centre of mass of its edge-adjacent

neighbours. This produces the highest-symmetry embedding

of a periodic net, and permits the computation of the asso-

ciated space group when there are no collisions. A collision

occurs when two vertices have the

same coordinates in the equili-

brium placement (configurations

that generate collisions are

described later in this section). The

final output of the algorithm is a

systre key – a canonical repre-

sentation of the labelled quotient

graph for the periodic net that uses

its smallest translational unit cell.

The systre key provides a unique

signature for topologically

isomorphic crystal nets (Delgado-

Friedrichs & O’Keeffe, 2003).

We derive systre keys and bary-

centric embeddings for our e-nets

as a way to identify the distinct

periodic net topologies generated

by our enumeration. First, a

quotient graph for the e-net is

derived directly from an E-tiling via

its cut ��� D symbol. The e-net

topology is adjusted slightly by
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Figure 22
Some E-tilings of the P and D surfaces that lead to equivalent e-nets, whose simplest embedding is that of
Fig. 23. The corresponding U-tilings have (4, 6) and (6, 6) topologies, corresponding to the hyperbolic
nets hqc5 and hqc10, respectively (Table 8). Since EDC1 is the lowest index for these cases, all e-nets take
the name edc1.

Figure 21
(a) An FSGG tiling with symmetry ?266. Notice that two edges are
common to adjacent tiles, giving edge decorations composed of kites with
a single interior edge. (b) The dual tiling of (a), composed of kites and
stars. Edges of adjacent stars sharing two vertices are necessarily kinked
to accommodate the interstitial elongated kite-shaped faces dual to the
kites of (a). Those (vertex-free) edges make the h-net a multigraph.



coalescing any multigraph edges. We then compute the equi-

librium placement and systre key for the net where possible.

Most of the nets enumerated via our hyperbolic tiling

approach are collision-free: from 18 285 E-tilings (6095

U-tilings on each of the P, G and D surfaces) we found 2247

nets with equilibrium collisions. Thus, the systre key is an

effective, although occasionally inadequate, tool for identi-

fying the set of distinct network topologies derived from our

surface reticulations. Indeed, most s-nets have a single e-net

antecedent: of the 14 532 distinct systre keys, only 954 are

obtained in more than one way.

The s-nets are ranked by their systre key and assigned

distinct names of the form sqcN, where s, q and c have the

same meanings as above, and the index N is derived from the

systre-key ranking. This ordering is intuitively appealing, with

a gradual increase in net ‘complexity’ (to first order, the

number of vertices and edges in a primitive unit cell) as the

index rises. For example, the first-ranked net according to this

scheme, sqc1, is the standard net of the simple cubic lattice; the

diamond net (whose e-net antecedent is a multigraph) is sqc6

etc.

We finish this section with a discussion of some problems

that arise when analysing nets using barycentric embeddings.

A minor cautionary example – a degree-6 (4, 6) tiling with

orbifold ?25ðaÞ (UQC42) derived from a reticulation of the D

surface, forming the (degree-6) e-net edc42 – is shown in Fig.

25. Here, the barycentric embedding of the net is free of vertex

collisions but a pair of edges intersect, inducing apparent

vertices of degree four: a situation that is due solely to the

edge embedding in E3. Barycentric embedding of edc42 gives

the s-net sqc900, which contains virtual degree-4 edge cross-

ings in addition to the degree-6 vertices. These edge crossings

in the s-net are problematic when determining the ambient

isotopy classes of associated e-nets.

Vertex collisions are even more problematic, and can

involve either small subsets of the net or triply periodic

subgraphs. An example of the former are tilings that contain

kites with a single interior edge like those in Fig. 21. The

barycentric embedding of an associated e-net collapses the

interior edge of the kite and places its two vertices at the same

point. A more serious collapse is induced by ‘ladder’ graphs:

examples composed of identical periodic nets linked by rung-

like edges. In those cases, the identical components collapse

onto themselves entirely. An example is the graph illustrated

in two distinct entangled forms in Fig. 24. The graph topology

of both nets is a ladder graph built from a pair of regular

degree-3 triply periodic graphs. Each component of the ladder

is a graph known to chemists as the srs graph (O’Keeffe, 2008).

As mentioned in x6.2 we must resort to other topological

signatures such as coordination sequences to characterize nets

that contain vertex collisions.

6.4. o-Nets

Our enumeration of tilings of the tritorus, known as

O-tilings, can be extended to produce embeddings of finite

graphs in E3, just as E-tilings induce e-nets. Recall from the

introduction to this section that – like e-nets – o-nets are

distinguished by their ambient isotopy class. Unlike the E–e

map, a single O-tiling can induce an infinite number of distinct

o-nets, due to the flexibility in forming a tritorus in E3. The

nuances of the construction of o-nets from O-tilings are

complex and remain to be explored in detail. Some discussion
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Figure 24
(a) A pair of rhombohedral e-nets, with degree-3 and degree-4 vertices.
(b, c) Subgraphs of these e-nets give the distinct two-component (2, 4)
and (2, 6) torus links, shown as coloured cycles.

Figure 23
The e-net formed by the E-tilings depicted in Fig. 22 – a cubic degree-6
structure with all edges and angles equal.



of the problem will be presented in a forthcoming paper which

explores the construction of entangled polyhedral nets from

tilings of the (genus-1) torus, to which we direct the interested

reader (Castle et al., 2009). In addition to the one-to-many

map in going from O-tilings to o-nets, a many-to-one collapse

is also possible: o-nets derived from distinct O-tilings may be

equivalent, in the sense that one can be deformed into the

other without any edge crossings. The O–o map is therefore

many-to-many. We have yet to explore the taxonomy of o-nets

in detail, but flag their presence here due to their strong links

to the other surface reticulations.

7. A worked example

The path described in this paper – from Delaney–Dress

symbols and their embedding within subgroups of ?246
(U-tilings), then to E-tilings on the TPMS, giving e-nets and

their canonical E3 embeddings as s-nets – is one that traverses

aspects of geometry, group theory and tiling theory. It is

therefore rather tortuous to navigate. With the formalities in

place, we offer a detailed worked example – starting with a D

symbol, and finishing with the triply periodic Euclidean nets

obtained from reticulations of the P, D and G surfaces – to

illustrate the connections between structures generated by our

enumeration procedure.

We begin with a sequence of hyperbolic tilings in Fig. 26

that show the progression from the fundamental tile-transitive

tiling for ?2244, to a tile-2-transitive split and glued tiling, to

its vertex-2-transitive dual (cf. x3). We adopt the vertex-2-

transitive tiling as the starting point for our example. This

tiling contains one vertex of degree 3 and one of degree 5, with

four distinct tiles (three quadrilaterals and an octagon)

arranged around each vertex to give the two-dimensional

Schläfli symbol (4.8.8), (4.4.4.8.8). The combinatorial

description of this tiling requires eight chambers and is given

by the Delaney–Dress symbol in Table 9 (cf. Appendix B).

This symbol is given the label QC643 according to the algo-

rithm explained at the end of x3. Since this symbol is minimal –

i.e. it has the highest possible symmetry for a tiling with this

topology – it defines an h-net, labelled hqc583 (cf. x6.1).

Our tiling can be embedded into two distinct subgroups of

?246, as shown in Fig. 27. The next step is to unfold these

tilings in their respective subgroup charts to obtain the

corresponding U-tilings: UQC1346 and UQC1345 (cf. x5.1).

The translational domain for the ?2244ðaÞ example is shown

in Fig. 28.
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Figure 25
The e-net edc42 embedded according to its edge geometry in the D
surface. The midpoints of curved edges are marked by non-coincident
yellow spheres. Barycentric embedding of edc42 in E3 gives the s-net
sqc900. Pairs of curved edges of edc42 collide, giving edge crossings
(yellow spheres) in addition to the degree-6 (green) vertices.

Table 9
The Delaney–Dress symbol for the vertex-2-transitive tiling UQC1346
shown in Fig. 26(c).

a b c d e f g h

0-nbr c b a d e f g h
1-nbr b a d c e g f h
2-nbr a f c e d b h g

m01 8 8 8 8 4 4 4 4
m12 5 5 3 3 3 5 5 5

Table 10
Periodic graph representations derived from our example tiling UQC1346
from the subgroup ?2244ðaÞ.

The 16 translationally distinct vertices are labelled 0–15, with the choice of
representatives as shown in Fig. 28. Each row defines one of the 32 distinct
edges. The first two columns specify the vertex pairs that define an edge. The
next four columns give the translation that needs to be applied to the second
vertex to put it in the correct neighbouring cell. These translations are given
for the hyperbolic net, then the e-nets on the P, D and G surfaces. The
Euclidean translations are given with respect to the {a, b, c} bases defined in
Table 2.

v1 v2 H
2 P D G

0 1 I 000 000 000
0 2 I 000 000 000
0 4 I 000 000 000
0 8 I 000 000 000
0 8 t�1

2 010 110 001
1 3 t1 100 101 010
1 5 t�1

3 001 011 100
2 3 I 000 000 000
2 6 ��1

2 t�1
3 100 010 001

2 10 I 000 000 000
2 10 t�1

1 �
�1
3 010 001 100

3 7 t�1
1 t�1

3 101 110 110
4 5 I 000 000 000
4 6 ��1

2 t�1
3 100 010 001

4 12 I 000 000 000
4 12 t3�

�1
1 010 001 111

5 7 I 000 000 000
6 7 I 000 000 000
6 14 I 000 000 000
6 14 t3t1�3t�1

2 �
�1
1 010 110 010

8 9 I 000 000 000
8 10 I 000 000 000
8 12 t2 010 110 001
9 11 t2�

�1
3 100 010 111

9 13 ��1
1 011 010 011

10 11 I 000 000 000
10 14 �3t1�

�1
2 t�1

3 110 011 101
11 15 �3t�1

2 �
�1
1 111 000 100

12 13 I 000 000 000
12 14 t�1

2 �3t1�
�1
2 t�1

3 100 101 100
13 15 I 000 000 000
14 15 I 000 000 000



We pause for a moment to look for other D symbols from

our enumeration that generate the same U-tilings as our

example. We find that UQC1346 is also the unfolding of a

distinct D symbol, labelled QC1442, in the subgroup ?26ðbÞ.
Further, UQC1345 is generated by QC1442, but via an

embedding in ?26ðaÞ. The initial tiling (QC643, with symmetry

?2244) is related to the tiling QC1442, of symmetry ?26, by an

additional symmetry that halves the area of the fundamental

domain. Thus, QC1442 has the same h-net as QC643. If we

now step sideways, we find that QC1442 has two distinct

automorphic embeddings in the subgroup ?26ðaÞ, giving two

additional U-tilings. And so we see that this h-net topology

(hqc583) is in fact associated with two subgroup tilings, five

embeddings in four kaleidoscopic subgroups and three

U-tilings. These relationships are illustrated in Fig. 29.

We now return to the ?2244ðaÞ example (UQC1346) and

the periodic nets generated by its projection onto the P, D and

G surfaces (cf. x6). First look at the periodic net as it sits in the

hyperbolic plane. The net carried by UQC1346 has 16 trans-

lationally distinct vertices and 32 distinct edges, as shown in

Fig. 28. With the vertex labels marked as shown in this figure,

we build the labelled quotient-graph description of the net

given in Table 10. Edges between vertices that lie in different

copies of the translational unit cell are labelled by the relative

translation between the cells. We map this hyperbolic periodic

net directly onto three e-nets (one on each TPMS) using the

covering map actions defined in Table 2 of x2. The resulting

triply periodic nets are also given in Table 10. Translational

unit cells for the P and D surface tilings are shown in Fig. 30.

Lastly, we apply the Systre algorithm to the three e-nets to

find a canonical form for the associated s-nets (cf. x6.3). Both

the P and D e-nets reduce to crystal nets with only eight

vertices per unit cell, rather than the 16 found in the e-nets.

This means that the crystal nets can be symmetrized to display

an additional translational symmetry, absent in the surface

embedding (in fact, this translation is one that swaps sides of

the surface). In contrast, the s-net derived from the e-net

embedded in the G surface retains the full 16 vertices (because

the G surface does not have an extra translational symmetry

that swaps sides of the surface). Crystallographic descriptions

of the resulting s-nets are given in Tables 11–13 and unit-cell

images are shown in Figs. 31 and 32. Note that each s-net has

two symmetrically distinct vertices

and four distinct edges – an

equivalent multiplicity to that of

the ?2244ðaÞ subgroup tiling.

8. Future directions

The work presented here has

focused on tilings and surface reti-

culations derived from the kalei-

doscopic subgroups that are

compatible with the genus-3 trans-

lational unit cells of the P, D and G

minimal surfaces. There are many

directions to extend our enumera-

tion, including other subgroups

compatible with the P, D and G

surfaces; other triply periodic

minimal surfaces; and further

generalizations discussed below.

In the near future we intend to

study nets derived from non-

kaleidoscopic subgroups compa-

tible with the P, D and G surfaces.

These orbifold families include

mixed reflection–rotation examples

that we call ‘hat’ orbifolds, and

pure rotational ‘stellate’ orbifolds

(Hyde et al., 2009). Given that there

are 29 and 21 distinct subgroups of

?246 with hat and stellate orbifolds,

respectively, the profusion of

results is expected to be significant.

Other orbifold classes, including

the non-orientable ‘projective’

examples, may be explored at a
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Figure 26
(a) The fundamental tile-transitive tiling for the orbifold ?2244. (b) A tile-2-transitive tiling obtained via
a split from a ?4 vertex to the opposite edge of the fundamental tile and two edge-glue operations,
resulting in deletion of the edges in the fundamental tiling joining adjacent ?6 sites. (c) The corresponding
vertex-2-transitive dual.

Figure 27
(a) The Conway crankshaft diagram (described in Appendix B) for the D symbol of Table 9, labelled
QC643. (b) An embedding of this tiling in the ?2244ðaÞ subgroup of ?246, the U-tiling UQC1346. (c) The
same symbol embedded in ?2244ðbÞ, UQC1345. Single orbifold domains are highlighted and the
chambers are labelled exactly as specified in the crankshaft diagram.



later date. We also plan to extend the project to explore nets

generated as reticulations of other TPMSs, specifically the

remaining genus-3 TPMSs: the hexagonal H and tetragonal

CLP surfaces. We also plan to investigate this process on the

genus-4 cubic I-WP surface. The complications associated with

extending to genus-4 examples are likely to be outweighed by

the novelty of the examples. We have already determined the

hyperbolic crystallography and covering maps for these

surfaces and derived the relevant compatible orbifolds

(Robins et al., 2004b; Robins, 2006).

A parallel effort will be directed at generalizing the

remarkably powerful Delany–Dress apparatus to allow

enumeration of other tilings that are commonplace in the

hyperbolic plane but which have no analogue in the Euclidean

plane. Such tilings contain infinite-sided hyperbolic polygons

arranged in ribbon- or tree-shaped patterns which we propose

to call ‘free tilings’. Specific examples that are commensurate

with the P, D and G surfaces have been shown to lead to

multiple intergrown nets (Hyde & Oguey, 2000; Hyde et al.,

2003); other examples are summarized online (Ramsden et al.,

2004). We intend to explore free tilings using an extension to

Delaney–Dress tiling theory and thus achieve a systematic

enumeration of complex net intergrowths.

In addition to the triply periodic structures described here,

our techniques readily adapt to the enumeration of finite

(molecular) nets via reticulations of compact surfaces. We have

already mentioned these O-tilings and o-nets in xx5.3 and 6.4.

Specific embeddings of these nets are a rich topic, barely
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Figure 28
Our example tiling embedded in ?2244ðaÞ is shown with a translational
domain highlighted to represent the U-tiling UQC1346. The vertices in
the translational domain are labelled 0–15 in black, consistent with the
periodic graph description in Table 10. The vertices labelled in white are
translated copies of those in the translational unit cell.

Figure 29
This diagram shows the relationships between two subgroup tilings QC643 and QC1442 that lift to the same h-net, and their various embeddings and
unfoldings in ?246 subgroups. The three U-tilings are UQC1346, UQC1345 and UQC3191.



explored to date. By defining a covering map from the

hyperbolic plane onto an explicit embedding of the tritorus in

Euclidean space, we can use the structure of the surface reti-

culation to define an embedding of the o-net. Generic exam-

ples will be knotted, linked and ravelled, governed by the

wealth of possible cycle homotopies on the tritorus. A sample

of the possibilities can be seen in a study of knotted toroidal

polyhedra, generated via reticulations of a torus (Hyde &

Schröder-Turk, 2007; Castle et al., 2009), as well as a recent

exploration of ravelled graphs (Castle et al., 2008).

9. Discussion of results

As discussed in x6, our approach enumerates a range of nets

from infinite symmetric two-dimensional hyperbolic h-nets

and infinite triply periodic Euclidean e- and s-nets, to finite

o-nets.

The Euclidean s-nets formed from low-transitivity tilings of

the hyperbolic plane afford an interesting variety of canonical,

symmetric embeddings of distinct network topologies in three

dimensions. These data are directly comparable with

complementary enumeration schemes pursued by (princi-

pally) structural chemists, including O’Keeffe’s Reticular

Chemistry Structural Resource (RCSR) database of three-
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Table 13
Crystallographic description of the s-net derived from the UQC1346 tiling
projected onto the G surface, forming the EGC1346 tiling.

This information can be accessed online at http://epinet.anu.edu.au/sqc7684.
Symmetry group I42d, a = 2.30597, c = 2.31613 Å.

Vertex Degree x y z

v1 5 0.10435 0.14742 0.17446
v2 3 0.14603 0.40658 0.92807

Edges
Start x, y, z End x, y, z

0.1043 0.1474 0.1745 �0.1474 0.3956 0.4245
0.1043 0.1474 0.1745 0.1474 �0.1043 �0.1745
0.0934 0.8540 0.6781 0.3956 1.14742 0.5755
0.0934 0.6460 0.5719 0.1460 0.40658 0.9281

Table 12
Crystallographic description of the s-net derived from the UQC1346
tiling projected onto the D surface, forming the EDC1346 tiling.

This information can be accessed online at http://epinet.anu.edu.au/sqc2018.
Symmetry group P42m, a = 1.41228, c = 3.60072 Å.

Vertex Degree x y z

v1 5 0.23691 0.23691 0.10319
v2 3 0.36278 0.36278 0.37199

Edges
Start x, y, z End x, y, z

0.2369 0.2369 0.1032 �0.2369 0.7631 0.1032
0.2369 0.2369 0.1032 0.2369 �0.2369 �0.1032
0.2369 0.2369 0.1032 0.3628 0.3628 0.3720
0.3628 0.3628 0.3720 0.6372 0.3628 0.6280

Table 11
Crystallographic description of the s-net derived from the UQC1346
tiling projected onto the P surface, forming the EPC1346 tiling.

This information can be accessed online at http://epinet.anu.edu.au/sqc1743.
Symmetry group P4=mmm, a = 3.41421, c = 1.0 Å.

Vertex Degree x y z

v1 5 0.14645 0.14645 0.00000
v2 3 0.35355 0.35355 0.00000

Edges
Start x, y, z End x, y, z

0.1464 0.1464 0.0000 �0.1464 0.1464 0.0000
0.1464 0.1464 0.0000 0.1464 0.1464 �1.0000
0.1464 0.1464 0.0000 0.3535 0.3535 0.0000
0.3535 0.3535 0.0000 0.3535 0.6464 0.0000

Figure 30
Our example tiling UQC1346 projected onto the P and D surfaces. The
surface patches are (nonstandard) translational unit cells that correspond
to the highlighted region in the hyperbolic plane shown in Fig. 28.

Figure 32
Stereo pair for the s-net derived from the ?2244ðaÞ U-tiling UQC1346
projected onto the G surface.

Figure 31
The two s-nets derived from projections onto the P and D surfaces (left
and right, respectively) of the ?2244ðaÞ U-tiling UQC1346.



dimensional nets and tilings (O’Keeffe, 2008; O’Keeffe et al.,

2008) and the Hypothetical Zeolite database of Treacy and

colleagues (Foster & Treacy, 2008). These collections comprise

nets in three-dimensional Euclidean space constructed using

three-dimensional tilings and symmetry principles. We note

that our 14 532 embedded s-nets derived from tilings of

Coxeter orbifolds include circa 150 examples found in the

RCSR database, which contains more than 1500 distinct

structures. Among those common examples are 14 known

zeolite structures. Therefore, this first pass has already furn-

ished around 10% of nets considered to be of relevance to

reticular chemistry. More than 200 examples of our s-nets also

appear in the Hypothetical Zeolite database (Foster, 2008).

Many more structures of actual and/or potential chemical

interest are certain to emerge by moving beyond Coxeter

orbifolds and by reticulating noncubic surfaces. However, we

hasten to point out that our motivation for this work goes

beyond enumeration of chemically interesting patterns; rather

we are primarily interested in exploring the variety of nets that

emerge without imposition of chemical constraints. Evidently,

we are forced to impose filters to avoid the inevitable

combinatorial explosion associated with such a search;

we have opted to filter the nets according to their two-

dimensional hyperbolic symmetries.

Our approach is governed by the simplicity of tiling

enumeration in two dimensions as opposed to three, along

with the suspicion that symmetric patterns in two-dimensional

hyperbolic space yield symmetric patterns in three-

dimensional space. The latter feature has been (and will be)

discussed elsewhere; some statistics on the variety of three-

dimensional symmetries and vertex transitivity of s-nets can

be read in Hyde et al. (2006). Our goal, however, has not been

to offer a circuitous route to what is already enumerated

elsewhere. Rather, we hope that this route generates new

examples not readily deduced by more conventional three-

dimensional approaches.

We find, for example, a vertex-2-transitive (12, 4) tiling

generated in the ?2626 orbifold within the FSGG class of

tilings. Projection of this subgroup tiling onto the gyroid, via

the U-tiling UQC104, gives an e-net, egc104, whose bary-

centric form is a rhombohedral (R3c) vertex-1-transitive

(uninodal) s-net in three-dimensional Euclidean space, sqc906,

labelled usf by O’Keeffe (2008). This structure has been

identified in molecular frameworks (Moulton et al., 2003), yet

three-dimensional tiling theory cannot find a ‘proper’ tiling

(Blatov et al., 2007) for this pattern.

A second example is the sphere packing 3/10/h4 (Sowa &

Koch, 2006), named wiw by O’Keeffe (2008). This structure

too emerges as an s-net, sqc3054 via the degree-3 FSGG

subgroup tiling with ?2626 symmetry illustrated in Fig. 33.

That tiling unfolds to the U-tiling UQC262, which maps onto

the gyroid to form an E-tiling, whose e-net, egc262, is topo-

logically equivalent to sqc3054, also illustrated in Fig. 33. The

three-dimensional tiling algorithm TOPOS (Blatov, 2006) fails

to find a simple tile for this structure (Blatov, 2007), due to the

threading of short rings in the net by other edges. This

threading precludes the possibility of those rings spanning

faces of a simple three-dimensional tile.

We expect the most powerful aspect of our enumeration

technique to emerge over time: namely the possibility of

finding distinctly tangled embeddings of topologically

isomorphic nets. It is that possibility that has encouraged us to

retain e-nets as a distinct class, since their edges wind

according to the tiling of the TPMS, in contrast to barycentric

s-net embeddings. The latter nets relax to a canonical

embedding that may lose the knottedness and generic entan-

glements of the original e-net.

The complete results of our enumeration are collated in an

online database, accessible at http://epinet.anu.edu.au, which

we urge interested readers to explore at their leisure. Ulti-

mately, we expect this growing database of nets to provide a

substantial foundation for a range of investigations into the

physical features of nets, extending current work on percola-

tion, transport and elastic responses (Gibson & Ashby, 1997;

Roberts & Garboczi, 2002; Durand, 2005; Durand & Weaire,

2004). This suite of examples will allow detailed exploration of

possible correlations between physical, topological and

geometric features of crystal nets.

APPENDIX A
Orbifolds

An orbifold encodes the symmetric

properties of an infinitely repeating

two-dimensional pattern with the

topological features of a compact,

connected surface. The concept has

its roots in the theory of discrete

groups, but the name was coined by

Thurston and his students by

combining orbit and manifold,

since each point of an orbifold

represents the entire orbit of a

point under the group of symmetry

operations of the pattern. Alter-
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Figure 33
Left: hyperbolic tiling with orbifold symmetry ?2626. Right: stereo pair of the tiling projected onto the
gyroid, relaxed to form the s-net sqc3054, also known as wiw (O’Keeffe, 2008), whose vertices define the
centres of equal spheres in the rhombohedral 3/10/h4 sphere packing.



natively, one can invert that process and generate a symmetric

pattern in the universal cover of the orbifold by ‘rolling’ the

inked orbifold in all possible directions on the relevant two-

dimensional homogeneous space – the sphere, S2, Euclidean,

E
2, or hyperbolic, H2, planes – printing the pattern as it goes.

Technically, the orbifold is the quotient space of the pattern by

its symmetry group, and the pattern is the universal cover of

the orbifold.

Two-dimensional symmetries include rotation about a

point, reflection in a mirror line, translation and glide reflec-

tion. In the orbifold a reflection produces a boundary

component, a rotation induces a cone point, while translations

and glides that do not arise from other symmetries of the

pattern are encoded by global topological features such as

rings, handles and cross-caps. These relationships are

described in more detail below.

A cone point is just what its name suggests. Rolling a cone

about its apex will generate a pattern with rotational

symmetry at that point. For the pattern to repeat exactly, the

angle swept out by the cone must be an integer subdivision of

2�. An orbifold containing just three cone points looks like a

samosa, or triangular pillow. If the only orbifold features are

two cone points, then each must be of the same order, as they

represent opposite poles of a spherical pattern. There are no

compact orbifolds consisting of a single cone point.

Now suppose the orbifold has a puncture, and therefore a

boundary edge. When rolling the orbifold surface over its

universal cover, in order to continue beyond the edge the

orbifold side in contact with the covering space must flip so the

pattern is locally reversed. Boundaries therefore encode

mirror reflections. A boundary must be a closed loop, which

may contain corners. A corner in the orbifold is formed by two

mirror lines meeting at an angle less than �. As with cone

points, for the pattern to unwrap and meet itself exactly, only

corner angles that are integer subdivisions of � are allowed.

Note that cone and corner points are local geometric features

that distinguish orbifolds from true manifolds.

Translational symmetries may be induced by combinations

of reflections or rotations. Those translations that are not

induced by other symmetries are encoded by a nontrivial loop

in the orbifold such as formed by a ribbon with its ends glued

together, or around the two axes of a torus. For example, a

finite cylinder with two boundary loops can be rolled across

the Euclidean plane mapping out a translationally periodic

pattern in one direction normal to its axis. Its boundaries

represent mirror lines so extension in the other direction of

the Euclidean plane is induced by parallel reflection lines.

A glide reflection is the (irreducible) composition of a

translation with a reflection, encoded within an orbifold by a

non-orientable surface feature such as a Möbius strip or cross-

cap. A cross-cap has the topology of the real projective plane,

and can be modelled by a disc with opposite points on the

boundary identified. For example, one traversal along the

centre of a Möbius strip brings you to the same point on the

opposite side of the ribbon (the flipped image of the initial

pattern); a second traversal is needed to come back to the

starting point on the original side. This doubled traversal is

identical to the translation induced by applying a glide

reflection twice.

We can encode independent symmetry operations of any

two-dimensional pattern on the sphere, Euclidean and

hyperbolic planes by distinct surface features of its orbifold;

namely boundaries, cone and corner points, cross-caps and

handles. This result depends on the central theorem of

2-manifold topology that every closed, compact, two-

dimensional manifold is topologically equivalent to either the

sphere, a sphere with n handles attached, or a sphere with n

cross-caps.

A simple notation for orbifolds is due to John Conway

(Conway, 1992; Conway & Huson, 2002). From it we can

reconstruct the orbifold surface topology and all its associated

symmetry features. The notation is unique up to certain

rearrangements of elements. The global topological features

are the handles, cross-caps and boundaries, and are denoted

by the symbols �, � and ?. A handle transforms to two cross-

caps in the presence of another cross-cap (�� ¼ ���). Thus,

by convention, handles and cross-caps are quarantined and an

orbifold symbol will either be prefixed by �’s or suffixed by

�’s. The nonmanifold features (cone and corner points) have

specific angles that are represented by their integer fractions

of 2� and �, respectively.

As there is no inherent ordering to nonboundary points of a

manifold, the cone points may be listed in any order. Thus, the

orbifold symbol 457 is equivalent to 754 or even 475 – in fact

any permutation is valid. We typically use lexical ordering to

make a nice canonical form, but this is not intrinsic to the

notation. Corner points, however, have a distinct ordering

based on their sequence around a boundary component. A

mirror string is given by a single ?, representing the boundary

component, followed by a list of its corner points (if any).

Here the order matters, ?4567 is different to ?5467. However,

because there is no intrinsic start or end to a mirror boundary,

any cyclic permutation is equivalent, i.e. ?5674 and ?6745
represent the same orbifold as ?4567. Also, because a punc-

tured surface has no intrinsic inside or outside, one can reverse

the order of the corner points: i.e. ?4567 is equivalent to

?7654. Entire mirror strings correspond to punctures and, like

cone points, there is no way to intrinsically order these

features. Therefore the order of the mirror strings does not

matter.

The kaleidoscopic symmetry groups considered in this

paper are generated by reflections only, and are therefore

examples of Coxeter groups. Their orbifolds have the form of

a single mirror string, ?m1m2 . . ..
We give the complete lexical specification of an orbifold

symbol to summarize the above discussion: [some number of

�’s][cone points in any order][mirror strings in any order]

[some number of �’s] written as

� � � . . . c1c2c3 . . . ?m1m2 . . . ½?m4m5 . . .� . . .���:

Note that any string that meets the above specification

corresponds to a genuine orbifold except for those of the form

c, c1c2 where c1 6¼ c2, ?m, and ?m1m2 where m1 6¼ m2. Note also
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that we contract strings of identical numerals using power

notation to improve readability: e.g. 22222 will be written 25.

Orbifolds have an associated scalar value, computable from

the symbol elements, called the curvature index (also called

the cost or characteristic). For kaleidoscopic groups it is

�ð?m1m2 . . .Þ ¼ 1�
P

i

ðmi � 1Þ=2mi:

The general formula is given in Conway & Huson (2002). Its

value determines which of the three two-dimensional

geometries the symmetry pattern must belong to: positive

implies a spherical symmetry group, zero implies E2 and

negative implies H2. In the case of spherical or hyperbolic

geometry, the curvature also quantifies the area of a single

copy of the orbifold in the relevant plane of unit Gaussian

curvature. Euclidean space is unique in that shapes may be

scaled arbitrarily whilst preserving angles, so a Euclidean

orbifold has no associated area. The majority of all two-

dimensional orbifolds are hyperbolic, thus the variety of

hyperbolic two-dimensional tilings far exceeds that of Eucli-

dean or spherical space.

APPENDIX B
Delaney–Dress symbols

We discuss and illustrate tilings of the hyperbolic plane here,

see Fig. 34 for example, but the concepts apply to the sphere

and Euclidean plane with only minor changes, and the

underlying theory generalizes to higher-dimensional spaces.

The following four conditions form the definition of a tiling

of the hyperbolic plane:

(1) The tiles are closed topological discs.

(2) Tiles intersect only along their boundaries. The inter-

section of two tiles defines an edge, the intersection of three or

more tiles defines a vertex.

(3) The tiles are uniformly

bounded in size.

(4) The tiles cover the whole

hyperbolic plane.

To describe a tiling pattern we

subdivide the tiles into triangles,

called flags or chambers, and then

record the neighbour relations of

the different symmetry classes of

these chambers. To generate a

chamber system from a tiling, we

make a barycentric subdivision by

placing a 2-vertex in the centre of

each tile, a 1-vertex at the midpoint

of each edge and a 0-vertex at each

tiling vertex, then form 0-1-2-

triangles within each tile. The edges

of the chambers are also labelled

0-, 1- and 2-edges according to the

type of vertex they face. The

neighbour relations are formally

described by the action of three

maps, �0, �1 and �2, that map each

chamber to its neighbour across the

corresponding edge (or equiva-

lently, opposite the corresponding

vertex). For obvious geometric

reasons, these maps are involutions

(they are their own inverse).

The topology of the tiling is

encoded by describing what

happens on repeated application of

pairs of the neighbour maps. There

are three orbits to consider:
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Table 14
The Delaney–Dress symbol for the tiling shown in Fig. 34.

a b c d e f g h i j

0-nbr b a d c e g f i h j
1-nbr a c b e d f h g j i
2-nbr a b g f e d c h i j

m01 5 5 5 5 5 5 5 5 5 5
m12 4 4 4 3 3 3 4 4 8 8

Figure 34
An example hyperbolic tiling and chamber system illustrating Delaney–Dress tiling theory. At the upper
left is a tiling of the hyperbolic plane with symmetry ?2244, consisting of two types of pentagonal tile.
Each symmetrically distinct chamber appears once in the orbifold domain of ?2244, shown at the upper
right. The vertices of the chambers are labelled 0, 1 or 2, according to whether they lie on a tile vertex,
edge or centre, respectively, and the neighbour maps, �i, encode the adjacencies of chambers opposite a
vertex of type i. A Delaney–Dress symbol can be depicted (lower right) as an edge-coloured graph with
topological index pairs (r, p) added to each node. An alternative visualization is a Conway crankshaft
diagram, shown at the lower left, where the connected components indicate distinct tile or vertex orbits,
and orbit indices need only be listed once for each component.



(1) The (�0�1) orbit maps around a 2-vertex, and so visits

the chambers in a single tile. If the tile has r edges, then ð�0�1Þ
r

is the identity map on each chamber of the tile. The index r is

also called m01.

(2) The (�1�2) orbit maps around a 0-vertex, so walks

around the chambers that meet at a vertex of the tiling. If the

vertex has degree p then ð�1�2Þ
p is the identity for each

chamber incident at that vertex. The index p is also called m12.

(3) Finally, (�2�0) maps around a 1-vertex, i.e. an edge of the

tiling. Since exactly four chambers meet at a 1-vertex, we have

that ð�2�0Þ
2 is the identity for every chamber.

The chamber system described so far is an infinite complex

because infinitely many bounded tiles are needed to cover the

hyperbolic plane. We obtain a finite description of the tiling by

forming equivalence classes of chambers under the action of

the symmetry group. If the group has a compact orbifold, then

there will be a finite number of chamber classes. The �i maps

preserve these symmetry classes, so only a finite number of

neighbour relations need to be recorded. These chamber

classes, their neighbour maps, and the topological indices r and

p defined above are all the information needed to form the

Delaney–Dress symbol.

We illustrate the above definitions with an example, shown

in Fig. 34. This hyperbolic tiling is built from two types of

pentagonal tile, with vertices of degree 3, 4 and 8, and has

symmetry ?2244. On the upper left of Fig. 34 each pentagonal

tile is shown subdivided into triangular chambers. Labels are

assigned so that symmetrically equivalent chambers have the

same letter. There are ten symmetrically distinct chambers and

these cover a single copy of the ?2244 orbifold (shown upper

right). The chamber vertices are labelled 0, 1, 2, according to

whether they lie on a tile vertex, edge or centre, respectively.

The neighbour maps �i that encode the adjacency of chambers
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Table 15
The ?246=��� chart.

No. Label R1-nbr R3-nbr R2-nbr

0 I 1 2 3
1 R1 0 4 5
2 R3 6 0 7
3 R2 5 8 0
4 R1R3 9 1 10
5 R1R2 3 11 1
6 R3R1 2 12 13
7 R3R2 13 14 2
8 R2R3 15 3 16
9 R1R3R1 4 17 18
10 R1R3R2 18 19 4
11 R1R2R3 20 5 21
12 R3R1R3 22 6 23
13 R3R1R2 7 24 6
14 R3R2R3 25 7 26
15 R2R3R1 8 27 28
16 R2R3R2 28 26 8
17 R1R3R1R3 29 9 30
18 R1R3R1R2 10 31 9
19 R1R3R2R3 32 10 33
20 R1R2R3R1 11 34 35
21 R1R2R3R2 35 33 11
22 R3R1R3R1 12 36 37
23 R3R1R3R2 37 38 12
24 R3R1R2R3 39 13 40
25 R3R2R3R1 14 41 42
26 R3R2R3R2 42 16 14
27 R2R3R1R3 43 15 44
28 R2R3R1R2 16 45 15
29 R1R3R1R3R1 17 46 47
30 R1R3R1R3R2 47 48 17
31 R1R3R1R2R3 49 18 50
32 R1R3R2R3R1 19 51 52
33 R1R3R2R3R2 52 21 19
34 R1R2R3R1R3 53 20 54
35 R1R2R3R1R2 21 55 20
36 R3R1R3R1R3 46 22 56
37 R3R1R3R1R2 23 57 22
38 R3R1R3R2R3 t�1

2 51 23 58
39 R3R1R2R3R1 24 59 60
40 R3R1R2R3R2 60 58 24
41 R3R2R3R1R3 t348 25 61
42 R3R2R3R1R2 26 62 25
43 R2R3R1R3R1 27 t�1

1 56 63
44 R2R3R1R3R2 63 64 27
45 R2R3R1R2R3 65 28 66
46 R1R3R1R3R1R3 36 29 67
47 R1R3R1R3R1R2 30 68 29
48 R1R3R1R3R2R3 t�1

3 41 30 69
49 R1R3R1R2R3R1 31 70 71
50 R1R3R1R2R3R2 71 69 31
51 R1R3R2R3R1R3 t238 32 72
52 R1R3R2R3R1R2 33 73 32
53 R1R2R3R1R3R1 34 t�1

1 67 74
54 R1R2R3R1R3R2 74 75 34
55 R1R2R3R1R2R3 76 35 77
56 R3R1R3R1R3R2 67 t143 36
57 R3R1R3R1R2R3 t�1

2 70 37 78
58 R3R1R3R2R3R2 t�1

2 72 40 38
59 R3R1R2R3R1R3 t368 39 79
60 R3R1R2R3R1R2 40 80 39
61 R3R2R3R1R3R2 t369 81 41
62 R3R2R3R1R2R3 ��1

2 t175 42 82
63 R2R3R1R3R1R2 44 t�1

1 78 43
64 R2R3R1R3R2R3 t�1

1 �
�1
3 73 44 83

65 R2R3R1R2R3R1 45 ��1
2 t�1

3 79 84
66 R2R3R1R2R3R2 84 83 45
67 R1R3R1R3R1R3R2 56 t153 46
68 R1R3R1R3R1R2R3 t�1

3 59 47 85
69 R1R3R1R3R2R3R2 t�1

3 61 50 48
70 R1R3R1R2R3R1R3 t257 49 86

Table 15 (continued)

No. Label R1-nbr R3-nbr R2-nbr

71 R1R3R1R2R3R1R2 50 87 49
72 R1R3R2R3R1R3R2 t258 88 51
73 R1R3R2R3R1R2R3 �3t164 52 89
74 R1R2R3R1R3R1R2 54 t�1

1 85 53
75 R1R2R3R1R3R2R3 t�1

1 �262 54 90
76 R1R2R3R1R2R3R1 55 �3t�1

2 86 91
77 R1R2R3R1R2R3R2 91 90 55
78 R3R1R3R1R2R3R2 t�1

2 86 t163 57
79 R3R1R2R3R1R3R2 t385 t3�265 59
80 R3R1R2R3R1R2R3 �187 60 92
81 R3R2R3R1R3R2R3 t3�

�1
1 t�1

2 88 61 93
82 R3R2R3R1R2R3R2 ��1

2 t190 93 62
83 R2R3R1R3R2R3R2 t�1

1 �
�1
3 89 66 64

84 R2R3R1R2R3R1R2 66 ��1
2 t�1

3 92 65
85 R1R3R1R3R1R2R3R2 t�1

3 79 t174 68
86 R1R3R1R2R3R1R3R2 t278 t2�

�1
3 76 70

87 R1R3R1R2R3R1R2R3 ��1
1 80 71 94

88 R1R3R2R3R1R3R2R3 t2�1t�1
3 81 72 95

89 R1R3R2R3R1R2R3R2 �3t183 95 73
90 R1R2R3R1R3R2R3R2 t�1

1 �282 77 75
91 R1R2R3R1R2R3R1R2 77 �3t�1

2 94 76
92 R3R1R2R3R1R2R3R2 �194 t3�284 80
93 R3R2R3R1R3R2R3R2 t3�

�1
1 t�1

2 95 82 81
94 R1R3R1R2R3R1R2R3R2 ��1

1 92 t2�
�1
3 91 87

95 R1R3R2R3R1R3R2R3R2 t2�1t�1
3 93 89 88



opposite a vertex of type i are also shown in Fig. 34, upper

right.

The complete set of adjacency relations for the chambers

and the topological indices may be given in tabular form, see

Table 14, or in two visual formats shown in Fig. 34. At the

lower right of Fig. 34 the D symbol is shown as a graph where

the nodes represent each chamber class and coloured edges

denote the �i involutions. The topological indices (r, p) for

each chamber are also attached to each node.

A more concise depiction is a crankshaft diagram shown in

Fig. 34, lower left, another elegant notation due to John

Conway. In this representation, each chamber is a broken

horizontal line, and the adjacencies between chambers are

given by vertical connections in the appropriate �i column

(self-adjacency is indicated by an open endpoint). The

topology of the �i�j chamber orbits is immediately apparent

from this crankshaft diagram. The �0�1 tile orbits are repre-

sented by connected components in the left part of the

crankshaft, and the �1�2 vertex orbits on the right. The �0�2

edge orbits are only implicitly represented in this diagram.

Each symmetrically distinct tile and vertex is defined by a

single connected component of the crankshaft, so the corre-

sponding orbit numbers (r, p) are listed only once. The tran-

sitivity is visually clear – in our tile-2-transitive example there

are two connected �0�1 components, while the four different

orbit components in the �1�2 column tell us the tiling is vertex-

4-transitive. A further advantage of the crankshaft diagram is

that the dual tiling is obtained simply by reflecting the diagram

about the central axis (in our two-dimensional case, exchan-

ging the �0 and �2 columns).

The power of Delaney–Dress symbols is that any two tilings

with identical topology and symmetry will have isomorphic

symbols, and the tiling can be completely reconstructed from

this finite amount of information. In addition, the orbifold

symbol and curvature index can be computed directly from the

Delaney–Dress symbol; see Delgado-Friedrichs (2003) for

further details.

APPENDIX C
The ?246=��� chart

Here we give the complete description of the ?246=��� chart

that forms the basis from which we derive all the unfolded ���

D symbols; see x4 for further details.

The full labelling of triangles and their neighbours in the

?246=��� chart is given in Table 15. This list is generated from

the kbmag word enumeration with short-lex ordering. The

generator order here is R1;R3;R2, since this gave a slightly

more balanced region in the hyperbolic plane than the

ordering R1;R2;R3. The domain

covered by the elements given here

is not the semi-regular dodecagon

illustrated in Fig. 10, but is equiva-

lent to it. The triangles with the 96

words from Table 15 define an

irregular shape illustrated in Fig.

35. The underlying group and

triangulation structure on the

tritorus is exactly the same as that

given by the dodecagon with

opposite sides glued.
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Grünbaum, B. & Shephard, G. C. (1987). Tilings and Patterns. New

York: W. H. Freeman.
Holt, D. F. (1998). KBMAG – Knuth–Bendix for Monoids and

Automatic Groups (http://www.maths.warwick.ac.uk/~dfh). Version
2.4. University of Warwick, Coventry, UK.

Huson, D. H. (1993). Geom. Dedic. 47, 269–296.
Hyde, S. T., Delgado-Friedrichs, O., Ramsden, S. J. & Robins, V.

(2006). Solid State Sci. 8, 740–752.
Hyde, S. T., Larsson, A.-K., Di Matteo, T., Ramsden, S. J. & Robins, V.

(2003). Austr. J. Chem. 56, 981–1000.
Hyde, S. T. & Oguey, C. (2000). Eur. Phys. J. B, 16, 613–630.
Hyde, S. T., O’Keeffe, M. & Proserpio, D. M. (2008). Angew. Chem.

Intl Ed. Engl. 47, 7996–8000.
Hyde, S. T., Robins, V. & Ramsden, S. J. (2009). In preparation.

Hyde, S. T. & Schroeder, G. E. (2003). Curr. Opin. Collect. Interf. Sci.
8, 5–14.
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